Computer hardware includes the physical parts of a computer, such as the case, central processing unit (CPU), random access memory (RAM), monitor, mouse, keyboard, computer data storage, graphics card, sound card, speakers and motherboard.
By contrast, software is the set of instructions that can be stored and run by hardware. Hardware is so-termed because it is “hard” or rigid with respect to changes, whereas software is “soft” because it is easy to change.
Hardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware.
The template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.
The personal computer is one of the most common types of computer due to its versatility and relatively low price. Desktop personal computers have a monitor, a keyboard, a mouse, and a computer case. The computer case holds the motherboard, fixed or removable disk drives for data storage, the power supply, and may contain other peripheral devices such as modems or network interfaces. Some models of desktop computers integrated the monitor and keyboard into the same case as the processor and power supply. Separating the elements allows the user to arrange the components in a pleasing, comfortable array, at the cost of managing power and data cables between them.
Laptops are designed for portability but operate similarly to desktop PCs. They may use lower-power or reduced size components, with lower performance than a similarly priced desktop computer. Laptops contain the keyboard, display, and processor in one case. The monitor in the folding upper cover of the case can be closed for transportation, to protect the screen and keyboard. Instead of a mouse, laptops may have a touchpad or pointing stick.
Tablets are portable computers that use a touch screen as the primary input device. Tablets generally weigh less and are smaller than laptops.
Some tablets include fold-out keyboards, or offer connections to separate external keyboards. Some models of laptop computers have a detachable keyboard, which allows the system to be configured as a touch-screen tablet. They are sometimes called “2-in-1 detachable laptops” or “tablet-laptop hybrids”.
Case[edit]
The computer case encloses most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer and protects internal parts from electrostatic discharge. Large tower cases provide space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.
Power supply[edit]
A power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the computer. Laptops can run on built-in rechargeable battery. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.
The motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).
Components directly attached to or to part of the motherboard include:
- The CPU (central processing unit), which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer. It takes program instructions from random-access memory (RAM), interprets and processes them and then sends back results so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heatsink and fan, or water-cooling system. Many newer CPUs include an on-die graphics processing unit (GPU). The clock speed of the CPU governs how fast it executes instructions and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.
- The chipset, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.
- Random-access memory (RAM), which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.
- Read-only memory (ROM), which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or “booting” or “booting up”. The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.
- The BIOS (Basic Input Output System) includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.
- Buses that connect the CPU to various internal components and to expand cards for graphics and sound.
- The CMOS (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.
- The video card (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.
- Power MOSFETs make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.