White paper on Fundamentals of Java

White paper on Fundamentals of Java

COURTESY :- vrindawan.in

Wikipedia

Java is a high-level, class-based, object-oriented programming language that is designed to have as few implementation dependencies as possible. It is a general-purpose programming language intended to let programmers write once, run anywhere (WORA), meaning that compiled Java code can run on all platforms that support Java without the need to recompile. Java applications are typically compiled to bytecode that can run on any Java virtual machine (JVM) regardless of the underlying computer architecture. The syntax of Java is similar to C and C++, but has fewer low-level facilities than either of them. The Java runtime provides dynamic capabilities (such as reflection and runtime code modification) that are typically not available in traditional compiled languages. As of 2019, Java was one of the most popular programming languages in use according to GitHub, particularly for client–server web applications, with a reported 9 million developers.

Java (programming language) - Wikipedia

Java was originally developed by James Gosling at Sun Micro systems. It was released in May 1995 as a core component of Sun Micro systems’ Java platform. The original and reference implementation Java compilers, virtual machines, and class libraries were originally released by Sun under proprietary licenses. As of May 2007, in compliance with the specifications of the Java Community Process, Sun had relicensed most of its Java technologies under the GPL-2.0-only license. Oracle offers its own Hot Spot Java Virtual Machine, however the official reference implementation is the Open JDK JVM which is free open-source software and used by most developers and is the default JVM for almost all Linux distributions.

As of September 2022, Java 19 is the latest version, while Java 17, 11 and 8 are the current long-term support (LTS) versions.

Sun has defined and supports four editions of Java targeting different application environments and segmented many of its APIs so that they belong to one of the platforms. The platforms are:

  • Java Card for smart-cards.
  • Java Platform, Micro Edition (Java ME) – targeting environments with limited resources.
  • Java Platform, Standard Edition (Java SE) – targeting workstation environments.
  • Java Platform, Enterprise Edition (Java EE) – targeting large distributed enterprise or Internet environments.

The classes in the Java APIs are organized into separate groups called packages. Each package contains a set of related interfaces, classes, sub packages and exceptions.

Sun also provided an edition called Personal Java that has been superseded by later, standards-based Java ME configuration-profile pairings.

One design goal of Java is portability, which means that programs written for the Java platform must run similarly on any combination of hardware and operating system with adequate run time support. This is achieved by compiling the Java language code to an intermediate representation called Java byte code, instead of directly to architecture-specific machine code. Java byte code instructions are analogous to machine code, but they are intended to be executed by a virtual machine (VM) written specifically for the host hardware. End-users commonly use a Java Runtime Environment (JRE) installed on their device for standalone Java applications or a web browser for Java applets.

Standard libraries provide a generic way to access host-specific features such as graphics, threading, and networking.

The use of universal byte code makes porting simple. However, the overhead of interpreting byte code into machine instructions made interpreted programs almost always run more slowly than native executables. Just-in-time (JIT) compilers that compile byte-codes to machine code during runtime were introduced from an early stage. Java’s Hot spot compiler is actually two compilers in one; and with GraalVM (included in e.g. Java 11, but removed as of Java 16) allowing tiered compilation. Java itself is platform-independent and is adapted to the particular platform it is to run on by a Java virtual machine (JVM) for it, which translates the Java byte code into the platform’s machine language.

Programs written in Java have a reputation for being slower and requiring more memory than those written in C++. However, Java programs’ execution speed improved significantly with the introduction of just-in-time compilation in 1997/1998 for Java 1.1, the addition of language features supporting better code analysis (such as inner classes, the StringBuilder class, optional assertions, etc.), and optimizations in the Java virtual machine, such as Hot Spot becoming Sun’s default JVM in 2000. With Java 1.5, the performance was improved with the addition of the java.util.concurrent package, including lock-free implementations of the Concurrent Maps and other multi-core collections, and it was improved further with Java 1.6.

Some platforms offer direct hardware support for Java; there are micro controllers that can run Java bytecode in hardware instead of a software Java virtual machine, and some ARM-based processors could have hardware support for executing Java bytecode through their Jazelle option, though support has mostly been dropped in current implementations of ARM.

Java uses an automatic garbage collector to manage memory in the object life cycle. The programmer determines when objects are created, and the Java runtime is responsible for recovering the memory once objects are no longer in use. Once no references to an object remain, the unreachable memory becomes eligible to be freed automatically by the garbage collector. Something similar to a memory leak may still occur if a programmer’s code holds a reference to an object that is no longer needed, typically when objects that are no longer needed are stored in containers that are still in use. If methods for a non-existent object are called, a null pointer exception is thrown.

One of the ideas behind Java’s automatic memory management model is that programmers can be spared the burden of having to perform manual memory management. In some languages, memory for the creation of objects is implicitly allocated on the stack or explicitly allocated and deallocated from the heap. In the latter case, the responsibility of managing memory resides with the programmer. If the program does not deallocate an object, a memory leak occurs. If the program attempts to access or deallocate memory that has already been deallocated, the result is undefined and difficult to predict, and the program is likely to become unstable or crash. This can be partially remedied by the use of smart pointers, but these add overhead and complexity. Note that garbage collection does not prevent logical memory leaks, i.e. those where the memory is still referenced but never used.

Garbage collection may happen at any time. Ideally, it will occur when a program is idle. It is guaranteed to be triggered if there is insufficient free memory on the heap to allocate a new object; this can cause a program to stall momentarily. Explicit memory management is not possible in Java.

Java does not support C/C++ style pointer arithmetic, where object addresses can be arithmetically manipulated (e.g. by adding or subtracting an offset). This allows the garbage collector to relocate referenced objects and ensures type safety and security.

As in C++ and some other object-oriented languages, variables of Java’s primitive data types are either stored directly in fields (for objects) or on the stack (for methods) rather than on the heap, as is commonly true for non-primitive data types (but see escape analysis). This was a conscious decision by Java’s designers for performance reasons.

Java contains multiple types of garbage collectors. Since Java 9, Hot Spot uses the Garbage First Garbage Collector (G1GC) as the default. However, there are also several other garbage collectors that can be used to manage the heap. For most applications in Java, G1GC is sufficient. Previously, the Parallel Garbage Collector was used in Java 8.

Having solved the memory management problem does not relieve the programmer of the burden of handling properly other kinds of resources, like network or database connections, file handles, etc., especially in the presence of exceptions.