White Paper on KLiC C , C++, & JAVA Programming

White Paper on KLiC C , C++, & JAVA Programming

COURTESY :- vrindawan.in

Wikipedia

C (pronounced like the letter c) is a general-purpose computer programming language. It was created in the 1970s by Dennis Ritchie, and remains very widely used and influential. By design, C’s features cleanly reflect the capabilities of the targeted CPUs. It has found lasting use in operating systems, device drivers, protocol stacks, though decreasingly for application software. C is commonly used on computer architectures that range from the largest supercomputers to the smallest micro controllers and embedded systems.

C (programming language) - Wikipedia

A successor to the programming language B, C was originally developed at Bell Labs by Ritchie between 1972 and 1973 to construct utilities running on Unix. It was applied to re-implementing the kernel of the Unix operating system. During the 1980s, C gradually gained popularity. It has become one of the most widely used programming languages, with C compilers available for almost all modern computer architectures and operating systems. C has been standardized by ANSI since 1989 (ANSI C) and by the International Organization for Standardization (ISO).

C is an imperative procedural language supporting structured programming, lexical variable scope, and recursion, with a static type system. It was designed to be compiled to provide low-level access to memory and language constructs that map efficiently to machine instructions, all with minimal runtime support. Despite its low-level capabilities, the language was designed to encourage cross-platform programming. A standards-compliant C program written with portability in mind can be compiled for a wide variety of computer platforms and operating systems with few changes to its source code.

Since 2000, C has consistently ranked among the top two languages in the TIOBE index, a measure of the popularity of programming languages.

C is an imperative, procedural language in the ALGOL tradition. It has a static type system. In C, all executable code is contained within subroutines (also called “functions”, though not in the sense of functional programming). Function parameters are passed by value, although arrays are passed as pointers, i.e. the address of the first item in the array. Pass-by-reference is simulated in C by explicitly passing pointers to the thing being referenced.

C program source text is free-format, using the semicolon as a statement separator and curly braces for grouping blocks of statements.

The C language also exhibits the following characteristics:

  • The language has a small, fixed number of keywords, including a full set of control flow primitives: if/elsefordo/whilewhile, and switch. User-defined names are not distinguished from keywords by any kind of sigil.
  • It has a large number of arithmetic, bit, wise, and logic operators: +,+=,++,&,||, etc.
  • More than one assignment may be performed in a single statement.
  • Functions:
    • Function return values can be ignored, when not needed.
    • Function and data pointers permit ad hoc run-time poly mor phism.
    • Functions may not be defined within the lexical scope of other functions.
    • Variables may be defined within a function, with scope.
    • A function may call itself, so recursion is supported.
  • Data typing is static, but weakly enforced; all data has a type, but implicit conversions are possible.
  • User-defined (type def) and compound types are possible.
    • Heterogeneous aggregate data types (struct) allow related data elements to be accessed and assigned as a unit.
    • Union is a structure with overlapping members; only the last member stored is valid.
    • Array indexing is a secondary notation, defined in terms of pointer arithmetic. Unlike structs, arrays are not first-class objects: they cannot be assigned or compared using single built-in operators. There is no “array” keyword in use or definition; instead, square brackets indicate arrays syntactically, for example month[11].
    • Enumerated types are possible with the enum keyword. They are freely inter convertible with integers.
    • Strings are not a distinct data type, but are conventionally implemented as null-terminated character arrays.
  • Low-level access to computer memory is possible by converting machine addresses to pointers.
  • Procedures (subroutines not returning values) are a special case of function, with an untyped return type void.
  • Memory can be allocated to a program with calls to library routines.
  • A preprocessor performs macro definition, source code file inclusion, and conditional compilation.
  • There is a basic form of modularity: files can be compiled separately and linked together, with control over which functions and data objects are visible to other files via static and extern attributes.
  • Complex functionality such as I/O, string manipulation, and mathematical functions are consistently delegated to library routines.
  • The generated code after compilation has relatively straightforward needs on the underlying platform, which makes it suitable for creating operating systems and for use in embedded systems.

While C does not include certain features found in other languages (such as object orientation and garbage collection), these can be implemented or emulated, often through the use of external libraries (e.g., the GLib Object System or the Boehm garbage collector).

Many later languages have borrowed directly or indirectly from C, including C++, C#, Unix’s C shell, D, Go, Java, JavaScript (including transpilers), Julia, Limbo, LPC, Objective-C, Perl, PHP, Python, Ruby, Rust, Swift, Verilog and System Verilog (hardware description languages). These languages have drawn many of their control structures and other basic features from C. Most of them (Python being a dramatic exception) also express highly similar syntax to C, and they tend to combine the recognizable expression and statement syntax of C with underlying type systems, data models, and semantics that can be radically different.

C++ (pronounced “C plus plus”) is a high-level general-purpose programming language created by Danish computer scientist Bjarne Stroustrup as an extension of the C programming language, or “C with Classes”. The language has expanded significantly over time, and modern C++ now has object-oriented, generic, and functional features in addition to facilities for low-level memory manipulation. It is almost always implemented as a compiled language, and many vendors provide C++ compilers, including the Free Software Foundation, LLVM, Microsoft, Intel, Embar cadero, Oracle, and IBM, so it is available on many platforms.

C++ - Wikipedia

C++ was designed with systems programming and embedded, resource-constrained software and large systems in mind, with performance, efficiency, and flexibility of use as its design highlights. C++ has also been found useful in many other contexts, with key strengths being software infrastructure and resource-constrained applications, including desktop applications, video games, servers (e.g. e-commerce, web search, or databases), and performance-critical applications (e.g. telephone switches or space probes).

C++ is standardized by the International Organization for Standardization (ISO), with the latest standard version ratified and published by ISO in December 2020 as ISO/IEC 14882:2020 (informally known as C++20). The C++ programming language was initially standardized in 1998 as ISO/IEC 14882:1998, which was then amended by the C++03, C++11, C++14, and C++17 standards. The current C++20 standard supersedes these with new features and an enlarged standard library. Before the initial standardization in 1998, C++ was developed by Stroustrup at Bell Labs since 1979 as an extension of the C language; he wanted an efficient and flexible language similar to C that also provided high-level features for program organization. Since 2012, C++ has been on a three-year release schedule with C++23 as the next planned standard.

In 1979, Bjarne Stroustrup, a Danish computer scientist, began work on “C with Classes“, the predecessor to C++. The motivation for creating a new language originated from Stroustrup’s experience in programming for his PhD thesis. Stroustrup found that Simula had features that were very helpful for large software development, but the language was too slow for practical use, while BCPL was fast but too low-level to be suitable for large software development. When Stroustrup started working in AT&T Bell Labs, he had the problem of analyzing the UNIX kernel with respect to distributed computing. Remembering his PhD experience, Stroustrup set out to enhance the C language with Simula-like features. C was chosen because it was general-purpose, fast, portable and widely used. As well as C and Simula’s influences, other languages also influenced this new language, including ALGOL 68, Ada, CLU and ML.

Initially, Stroustrup’s “C with Classes” added features to the C compiler, Cpre, including classes, derived classes, strong typing, inlining and default arguments.

Java is a high-level, class-based, object-oriented programming language that is designed to have as few implementation dependencies as possible. It is a general-purpose programming language intended to let programmers write once, run anywhere (WORA), meaning that compiled Java code can run on all platforms that support Java without the need to recompile. Java applications are typically compiled to bytecode that can run on any Java virtual machine (JVM) regardless of the underlying computer architecture. The syntax of Java is similar to C and C++, but has fewer low-level facilities than either of them. The Java runtime provides dynamic capabilities (such as reflection and runtime code modification) that are typically not available in traditional compiled languages. As of 2019, Java was one of the most popular programming languages in use according to GitHub, particularly for client–server web applications, with a reported 9 million developers.

Java was originally developed by James Gosling at Sun Micro systems. It was released in May 1995 as a core component of Sun Micro systems’ Java platform. The original and reference implementation Java compilers, virtual machines, and class libraries were originally released by Sun under proprietary licenses. As of May 2007, in compliance with the specifications of the Java Community Process, Sun had relicensed most of its Java technologies under the GPL-2.0-only license. Oracle offers its own Hot Spot Java Virtual Machine, however the official reference implementation is the Open JDK JVM which is free open-source software and used by most developers and is the default JVM for almost all Linux distributions.

As of September 2022, Java 19 is the latest version, while Java 17, 11 and 8 are the current long-term support (LTS) versions.

James Gosling, Mike Sheridan, and Patrick Naughton initiated the Java language project in June 1991. Java was originally designed for interactive television, but it was too advanced for the digital cable television industry at the time. The language was initially called Oak after an oak tree that stood outside Gosling’s office. Later the project went by the name Green and was finally renamed Java, from Java coffee, a type of coffee from Indonesia. Gosling designed Java with a C/C++-style syntax that system and application programmers would find familiar.

Sun Micro systems released the first public implementation as Java 1.0 in 1996. It promised write once, run anywhere (WORA) functionality, providing no-cost run-times on popular platforms. Fairly secure and featuring configurable security, it allowed network- and file-access restrictions. Major web browsers soon incorporated the ability to run Java applets within web pages, and Java quickly became popular. The Java 1.0 compiler was re-written in Java by Arthur van Hoff to comply strictly with the Java 1.0 language specification. With the advent of Java 2 (released initially as J2SE 1.2 in December 1998 – 1999), new versions had multiple configurations built for different types of platforms. J2EE included technologies and APIs for enterprise applications typically run in server environments, while J2ME featured APIs optimized for mobile applications. The desktop version was renamed J2SE. In 2006, for marketing purposes, Sun renamed new J2 versions as Java EEJava ME, and Java SE, respectively.

In 1997, Sun Micro systems approached the ISO/IEC JTC 1 standards body and later the Ecma International to formalize Java, but it soon withdrew from the process. Java remains a de facto standard, controlled through the Java Community Process. At one time, Sun made most of its Java implementations available without charge, despite their proprietary software status. Sun generated revenue from Java through the selling of licenses for specialized products such as the Java Enterprise System.

On November 13, 2006, Sun released much of its Java virtual machine (JVM) as free and open-source software (FOSS), under the terms of the GPL-2.0-only license. On May 8, 2007, Sun finished the process, making all of its JVM’s core code available under free software/open-source distribution terms, aside from a small portion of code to which Sun did not hold the copyright.

Sun’s vice-president Rich Green said that Sun’s ideal role with regard to Java was as an evangelist. Following Oracle Corporation’s acquisition of Sun Micro systems in 2009–10, Oracle has described itself as the steward of Java technology with a relentless commitment to fostering a community of participation and transparency. This did not prevent Oracle from filing a lawsuit against Google shortly after that for using Java inside the Android SDK (see the Android section).

Oracle released the last zero-cost public update for the legacy version Java 8 LTS in January 2019 for commercial use, although it will otherwise still support Java 8 with public updates for personal use indefinitely. Other vendors have begun to offer zero-cost builds of Open JDK 18 and 8, 11 and 17 that are still receiving security and other upgrades.

Sun has defined and supports four editions of Java targeting different application environments and segmented many of its APIs so that they belong to one of the platforms. The platforms are:

  • Java Card for smart-cards.
  • Java Platform, Micro Edition (Java ME) – targeting environments with limited resources.
  • Java Platform, Standard Edition (Java SE) – targeting workstation environments.
  • Java Platform, Enterprise Edition (Java EE) – targeting large distributed enterprise or Internet environments.

The classes in the Java APIs are organized into separate groups called packages. Each package contains a set of related interfaces, classes, sub packages and exceptions.

Sun also provided an edition called Personal Java that has been superseded by later, standards-based Java ME configuration-profile pairings.