Basics Of Computer Networks Innovation

Basics Of Computer Networks Innovation

Basics of Computer Networks Innovation


Introduction to Computer Networks

A computer network is a system of interconnected devices that communicate and share data. Networks have evolved significantly over the past few decades, leading to new architectures, protocols, and technologies. Today’s networks support a wide range of applications, from basic data sharing to complex Internet of Things (IoT) systems and cloud-based platforms. Innovations in networking are focused on improving speed, reliability, security, and scalability.

Key Concepts in Computer Networks

  1. Network Types
    • LAN (Local Area Network): Connects devices within a small area, like an office or building.
    • WAN (Wide Area Network): Extends over large distances, connecting multiple LANs.
    • MAN (Metropolitan Area Network): Covers a city or campus.
    • PAN (Personal Area Network): Connects personal devices within a close range.
  2. Network Topologies
    • Bus, Star, Ring, Mesh, and Hybrid Topologies: Determine the layout and design of a network, affecting its performance and fault tolerance.
  3. Protocols and Standards
  4. Network Devices
    • Router: Directs data packets across networks, connecting different IP networks.
    • Switch: Connects devices within a LAN, forwarding data based on MAC addresses.
    • Firewall: Provides security by controlling incoming and outgoing traffic based on pre-defined security rules.

Innovations in Computer Networks

  1. 5G and Beyond: High-Speed Wireless Networking
    • 5G technology significantly enhances network speeds and reduces latency, providing high-speed connectivity for mobile devices, IoT, and smart cities.
    • Innovations are already pushing towards 6G, aiming to support even faster data rates and enable advanced applications like holographic communication.
  2. Software-Defined Networking (SDN)
    • SDN decouples the control plane from the data plane, enabling centralized management and dynamic configuration of the network.
    • By allowing network administrators to programmatically control traffic flow, SDN enhances scalability, reduces costs, and improves efficiency in data centers and cloud environments.
  3. Network Function Virtualization (NFV)
    • NFV uses virtualization technology to consolidate network functions on standard servers, reducing the need for dedicated hardware.
    • This innovation enables faster deployment of network services, lowers operational costs, and supports scalability by virtualizing functions like firewalls, load balancers, and VPNs.
  4. IoT and Edge Computing Integration
    • Networks are increasingly integrated with IoT devices that generate vast amounts of data, making low-latency processing essential.
    • Edge computing, by processing data close to the source, reduces latency and bandwidth requirements, enhancing real-time decision-making and operational efficiency for IoT applications.
  5. Artificial Intelligence and Machine Learning in Networks
    • AI is used for network monitoring, predictive maintenance, and security threat detection, optimizing performance and reliability.
    • AI-based network automation can dynamically manage bandwidth, detect anomalies, and proactively respond to security threats, minimizing downtime and human intervention.
  6. Blockchain and Network Security Innovations
    • Blockchain provides decentralized authentication and data verification, making it useful for secure transactions and identity management in networks.
    • Zero Trust Architecture is also becoming a standard, enhancing security by enforcing strict identity verification and limiting access to trusted entities only.

Future Trends in Network Innovation

  1. Quantum Networking
    • Quantum networking promises secure data transmission through quantum encryption, which is theoretically unbreakable.
    • This field is still in the experimental stage, but it holds the potential to revolutionize secure communication for applications like financial transactions and government data.
  2. Terahertz Communication
    • Researchers are exploring the terahertz frequency spectrum for ultra-high-speed data transfer. This frequency range is likely to support future applications that require massive bandwidth and minimal latency, such as virtual reality and 3D communication.
  3. Self-Healing Networks
    • Networks are expected to become more autonomous, with the ability to detect and resolve faults in real time without human intervention. Self-healing networks utilize AI and machine learning to monitor and manage network health proactively.
  4. Integration with Cloud and Edge Computing
    • As organizations rely more on cloud services, integrating network infrastructure with cloud and edge computing solutions will ensure scalability and seamless connectivity.
    • Multi-access edge computing (MEC) will play a vital role in processing data at the network edge, enhancing performance and reducing latency for cloud applications.
  5. Sustainable Networking Solutions
    • Green networking focuses on reducing energy consumption and environmental impact, with innovations in energy-efficient routers, switches, and data centers.
    • Data centers are adopting cooling techniques, renewable energy sources, and optimized hardware to support sustainable operations.

Challenges in Network Innovation

  1. Security and Privacy
    • With increasing connectivity comes the risk of cyber threats. Innovations must incorporate robust security measures to protect data privacy and integrity, especially as IoT and cloud applications expand.
  2. Interoperability and Compatibility
    • Different network protocols and standards often create compatibility issues, especially when integrating legacy systems with modern networks.
  3. Scalability and Latency
    • Growing data demands require networks that are both scalable and capable of handling low-latency applications. Innovations in edge computing and high-speed networks aim to address these challenges.
  4. Cost of Upgrades and Infrastructure Investment
    • Adopting new networking technologies can be cost-intensive, requiring significant investments in infrastructure and training.

Conclusion

Innovations in computer networking are transforming how devices, systems, and people connect and communicate. The move towards 5G, SDN, AI-driven networks, and blockchain-based security are paving the way for a future of high-speed, secure, and resilient networks. While there are challenges, the potential for increased efficiency, real-time processing, and secure connectivity is immense. Organizations that embrace these innovations will benefit from improved performance, security, and scalability, essential for thriving in a connected world.


References

  • Cisco Systems, “SDN and NFV: Transforming Network Architecture,” Cisco White Paper, 2023.
  • IEEE, “Advances in 5G and IoT Integration,” IEEE Communications, 2022.
  • Gartner, “Future Trends in Network Technology,” Gartner Research, 2023.

What is required Basics Of Computer Networks Innovation

Requirements for Basics of Computer Networks Innovation

  1. Infrastructure Investment and Hardware Upgrades
    • High-performance routers, switches, and network access points are essential to support innovations like high-speed connectivity, real-time data processing, and IoT.
    • Investment in advanced networking hardware (5G equipment, fiber optics, edge computing devices) is crucial to handle increased data volumes and support new technologies such as SDN (Software-Defined Networking) and NFV (Network Function Virtualization).
  2. Advanced Networking Protocols and Standards
    • IPv6: With the rapid growth of internet-connected devices, IPv6 is required to support an expanded address space and improve routing efficiency.
    • 5G and Beyond Protocols: Protocols supporting 5G are necessary for low-latency, high-speed connections, essential for IoT and real-time applications.
    • SDN and NFV Standards: Adoption of SDN and NFV allows for more dynamic, flexible network management, essential for cloud and virtualized environments.
  3. Cybersecurity Measures
    • With network innovation, robust security is critical to protect data integrity, user privacy, and device authenticity.
    • Firewalls, Encryption, and Zero Trust Security frameworks ensure that only authorized devices can connect to the network.
    • AI-based intrusion detection systems help proactively identify and mitigate threats.
  4. Scalability and Flexibility in Network Design
    • Networks must be designed to scale easily and accommodate more devices, data, and new applications.
    • Edge Computing and Cloud Integration offer flexible options for expanding processing capabilities closer to the data source, reducing latency and improving efficiency.
    • Modular architectures allow for incremental upgrades, making it easier to adopt new technologies without overhauling the entire network.
  5. Software and Automation
    • Network Automation and Orchestration Tools: These are required to manage complex networks with minimal manual intervention, improving response time and efficiency.
    • AI and Machine Learning Algorithms: AI-driven networks can self-monitor, predict failures, optimize performance, and adapt to changing network demands, reducing operational costs and minimizing downtime.
  6. Compliance with Regulatory Standards
    • Compliance with data privacy laws (like GDPR) and telecommunications regulations is essential for any new network deployment to ensure data security and user privacy.
    • Adherence to global standards, such as IEEE and ITU-T, for device compatibility, interoperability, and network performance is crucial.
  7. Research and Development (R&D)
    • Continued R&D investment is required to explore and create advancements in network protocols, quantum networking, terahertz communication, and sustainable network solutions.
  8. User Training and Knowledge Enhancement
    • Network innovation requires skilled personnel who understand new technologies and can manage the shift from traditional to advanced network systems.
    • Training programs, certifications, and knowledge-sharing platforms for IT professionals help them stay current with emerging network technologies, security practices, and automation tools.

Meeting these requirements enables the development of advanced, resilient, and secure computer networks that support modern demands and future innovations.

Who is required Basics Of Computer Networks Innovation

Key Stakeholders Required for Basics of Computer Networks Innovation

  1. Network Engineers and Architects
    • Professionals who design and implement network solutions, ensuring the infrastructure meets current and future demands.
    • They are responsible for evaluating and selecting appropriate hardware, software, and protocols to create efficient network architectures.
  2. IT Managers and System Administrators
    • Oversee the day-to-day operations of the network, managing configurations, monitoring performance, and troubleshooting issues.
    • They play a crucial role in maintaining network security and compliance with regulations.
  3. Cybersecurity Experts
    • Specialists who focus on protecting the network from cyber threats through the implementation of security measures such as firewalls, intrusion detection systems, and encryption.
    • They are responsible for conducting security audits and ensuring compliance with data protection regulations.
  4. Software Developers
    • Developers who create network management tools, automation software, and applications that leverage network capabilities.
    • They may also work on developing APIs and interfaces for integrating different networking technologies.
  5. Data Scientists and Analysts
    • Professionals who analyze network data to identify trends, optimize performance, and improve decision-making.
    • Their insights help in network planning and capacity management.
  6. Telecommunications Providers
    • Companies that offer the infrastructure and services necessary for network connectivity, including internet access, leased lines, and cloud services.
    • Their collaboration is essential for expanding network capabilities, especially in rural or underserved areas.
  7. Regulatory Bodies and Compliance Officers
    • Organizations that establish standards and regulations for network operations, data protection, and privacy.
    • Compliance officers ensure that the network adheres to legal and industry standards, promoting trust among users.
  8. End Users
    • Individuals and organizations that rely on the network for daily operations, communications, and data sharing.
    • Their feedback on usability and performance is critical for continuous improvement and innovation.
  9. Research Institutions and Academia
    • Universities and research organizations contribute to the development of new networking technologies and protocols.
    • Collaboration between academia and industry can drive innovation through research projects and knowledge sharing.
  10. Investment and Funding Organizations
    • Venture capitalists, government agencies, and grants that fund research and development in networking technologies.
    • Their investment is crucial for supporting startups and projects focused on innovative networking solutions.

Conclusion

Innovation in computer networks requires a collaborative effort among various stakeholders, each contributing their expertise and resources. By working together, these professionals can advance networking technologies, enhance security, and improve user experiences, ultimately leading to more robust and efficient networks.

When is required Basics Of Computer Networks Innovation

Timing for Basics of Computer Networks Innovation

  1. Industry Advancements and Technology Evolution
    • Emerging Technologies: Innovation is often required when new technologies such as 5G, IoT (Internet of Things), edge computing, and AI are introduced, necessitating updates to network infrastructure.
    • Protocol Updates: When new networking protocols or standards (e.g., IPv6) are developed, organizations must innovate to adopt these technologies.
  2. Increased Demand for Connectivity
    • Growing User Base: As more devices connect to networks, particularly in residential, commercial, and industrial settings, the need for innovation arises to support higher traffic loads and enhance user experiences.
    • Remote Work and Hybrid Models: The rise of remote work and hybrid office environments has increased the demand for reliable and secure networking solutions.
  3. Cybersecurity Threats
    • Rising Cyber Threats: As cyber attacks become more sophisticated, organizations must innovate their network security measures continuously to protect sensitive data and maintain compliance.
    • Regulatory Changes: New regulations regarding data privacy and security may require organizations to innovate their networks to ensure compliance.
  4. Scalability Requirements
    • Business Growth: Companies experiencing growth often need to expand their network capabilities to support additional users, devices, and locations.
    • Changing Business Models: Shifts in business models (e.g., moving to cloud services) require innovative network solutions to accommodate new workflows and applications.
  5. Operational Efficiency
    • Cost Reduction: Organizations may seek to innovate their network systems to reduce operational costs, improve efficiency, and streamline management processes through automation and virtualization.
    • Performance Optimization: Ongoing performance assessments may identify the need for innovations to improve network speed, reliability, and user experience.
  6. Environmental Considerations
    • Sustainability Goals: Organizations focusing on reducing their carbon footprint may need to innovate their networks to incorporate energy-efficient technologies and practices.
    • Green Technologies: Adoption of green networking solutions is increasingly essential as companies aim for sustainability and environmental responsibility.
  7. Market Competition
    • Competitive Edge: To stay competitive, organizations must innovate their networking capabilities to offer better services, faster speeds, and enhanced customer experiences than their rivals.
    • Differentiation Strategies: Businesses may seek unique networking solutions that set them apart in the marketplace.
  8. Lifecycle Management
    • Hardware and Software Upgrades: As network hardware and software reach the end of their lifecycle, innovation is required to replace outdated components and maintain performance.
    • Legacy Systems Transition: Organizations using legacy systems may need to innovate to transition to modern solutions that support current and future needs.

Conclusion

Innovation in the basics of computer networks is required at various points throughout the lifecycle of technology, driven by advancements, demands for connectivity, security challenges, and organizational goals. Staying ahead in the rapidly evolving networking landscape necessitates proactive innovation to meet both current needs and future challenges.

Where is required Basics Of Computer Networks Innovation

Locations Where Basics of Computer Networks Innovation is Required

  1. Corporate Environments
    • Office Networks: Innovations are required in corporate networks to support employee collaboration, remote work, and secure data transmission.
    • Data Centers: Improvements in network infrastructure are needed to enhance data processing capabilities and support cloud services.
  2. Educational Institutions
    • Schools and Universities: Educational institutions need innovative networking solutions to provide reliable internet access, support online learning platforms, and facilitate research collaboration.
    • Campus Networks: Innovation in campus-wide networks can enhance connectivity for students and staff, ensuring seamless access to educational resources.
  3. Healthcare Facilities
    • Hospitals and Clinics: Innovative networking is crucial for telemedicine, electronic health records (EHR), and real-time monitoring of patients to improve healthcare delivery and patient outcomes.
    • Medical Equipment Integration: Networks must support the integration of medical devices and IoT solutions for efficient patient care.
  4. Government Agencies
    • Public Sector Networks: Government agencies require innovative networks for secure communication, data sharing, and efficient service delivery to citizens.
    • Emergency Services: Innovation in communication networks is critical for first responders and emergency management systems to ensure rapid and reliable information exchange.
  5. Manufacturing and Industrial Sectors
    • Smart Manufacturing: Industrial environments need advanced networking solutions to facilitate IoT applications, automation, and real-time data analytics for improved operational efficiency.
    • Supply Chain Management: Innovations in network connectivity can enhance tracking and monitoring across the supply chain, improving logistics and inventory management.
  6. Telecommunications Companies
    • Network Providers: Telecom companies are at the forefront of network innovation, requiring continuous improvements to support growing demands for bandwidth, especially with the rollout of 5G networks.
    • Infrastructure Upgrades: Innovations are necessary in infrastructure to enable faster and more reliable services for consumers and businesses.
  7. Retail Businesses
    • Point of Sale Systems: Retailers require innovative networking solutions to improve the efficiency of POS systems, inventory management, and customer engagement through data-driven insights.
    • Omni-channel Experiences: Enhancements in networking are needed to provide seamless integration across physical and digital channels for improved customer experiences.
  8. Home Networking
    • Smart Homes: Innovations are increasingly required in home networks to support IoT devices, such as smart thermostats, security systems, and home assistants.
    • Wi-Fi Enhancements: Solutions are needed to improve home Wi-Fi coverage and performance to accommodate the growing number of connected devices.
  9. Research and Development Facilities
    • Innovation Labs: R&D environments require cutting-edge networking solutions to support collaborative projects, data sharing, and high-performance computing.
    • Testing Environments: Innovation is crucial for developing and testing new networking technologies and protocols.
  10. Startups and Technology Companies
    • Agile Networking Solutions: Startups require innovative networking solutions that can scale quickly and adapt to changing business models and technologies.
    • Cloud-Based Solutions: Innovations in cloud networking can support rapid development and deployment of applications and services.

Conclusion

Innovation in the basics of computer networks is required across a wide range of environments, from corporate offices to educational institutions and healthcare facilities. Each sector has unique networking needs driven by technological advancements, user demands, and operational challenges, highlighting the importance of continuous innovation in this field.

How is required Basics Of Computer Networks Innovation

Research and Development (R&D)

    • Exploring New Technologies: Innovation requires continuous research into emerging technologies, such as software-defined networking (SDN), network function virtualization (NFV), and artificial intelligence (AI) in networking.
    • Prototype Development: Creating prototypes to test new networking solutions and understand their practical implications and performance.
  1. Collaboration Among Stakeholders
    • Cross-Disciplinary Teams: Involvement of network engineers, software developers, cybersecurity experts, and business analysts to identify challenges and develop innovative solutions collaboratively.
    • Partnerships with Academia: Collaborating with universities and research institutions can drive innovation through joint projects and access to cutting-edge research.
  2. Adoption of Agile Methodologies
    • Iterative Development: Utilizing agile frameworks to facilitate rapid prototyping, testing, and feedback cycles to refine networking solutions.
    • Responsive Changes: Quickly adapting to changes in technology trends, user requirements, and market conditions to stay relevant.
  3. Implementation of Advanced Technologies
    • AI and Machine Learning: Incorporating AI and machine learning to optimize network management, predict failures, and enhance security measures through automated threat detection.
    • IoT Integration: Developing innovative solutions to connect and manage IoT devices within existing network infrastructures.
  4. User-Centric Design
    • Understanding User Needs: Gathering feedback from end-users to inform the design and functionality of networking solutions, ensuring they meet real-world requirements.
    • Improving User Experience: Focusing on enhancing the usability and accessibility of network systems for all users.
  5. Security Enhancements
    • Proactive Security Measures: Innovating to implement advanced security protocols, such as zero-trust architectures, to protect against emerging cyber threats.
    • Regular Security Audits: Conducting ongoing assessments to identify vulnerabilities and update security measures accordingly.
  6. Scalability and Flexibility
    • Dynamic Infrastructure: Developing solutions that allow for easy scaling of network resources to accommodate growth in users and devices without significant downtime.
    • Cloud Networking: Innovating to leverage cloud services for flexibility, allowing organizations to adapt to changing demands quickly.
  7. Standardization and Compliance
    • Adhering to Standards: Following industry standards and best practices to ensure interoperability between different networking technologies and devices.
    • Regulatory Compliance: Innovating to meet evolving regulations regarding data protection and privacy in network management.
  8. Training and Skill Development
    • Continuous Learning Programs: Implementing training programs for IT staff to stay current with the latest networking technologies and best practices.
    • Certification Programs: Encouraging certifications in emerging technologies to enhance team capabilities and foster innovation.
  9. Feedback and Iteration
    • Continuous Improvement: Establishing mechanisms for collecting feedback from users and stakeholders to identify areas for improvement and drive iterative innovation.
    • Monitoring Performance Metrics: Analyzing performance data to assess the effectiveness of networking solutions and make informed decisions about future innovations.

Conclusion

Innovation in the basics of computer networks is a multifaceted process that involves research, collaboration, agile methodologies, advanced technologies, and user-centered design. By adopting these approaches, organizations can develop and implement innovative networking solutions that address current and future challenges while enhancing performance, security, and user experience.

Case Study on Basics Of Computer Networks Innovation

Case Study: Innovation in Computer Networks – The Implementation of Software-Defined Networking (SDN) at XYZ Corporation

Background

XYZ Corporation, a mid-sized technology company, faced challenges with its traditional networking infrastructure. As the company expanded, its reliance on a rigid, hardware-based networking model led to increased operational costs, complex configurations, and difficulty in scaling its network to meet the growing demand for bandwidth and flexibility. In response, the IT leadership decided to innovate by adopting Software-Defined Networking (SDN) to improve their network infrastructure.

Objectives

  • Increase Network Flexibility: Transition from a hardware-centric approach to a more agile, software-defined infrastructure.
  • Reduce Operational Costs: Lower the costs associated with maintaining and managing traditional network hardware.
  • Enhance Security: Implement a more secure network architecture to mitigate rising cybersecurity threats.
  • Support Scalability: Enable the network to scale dynamically in response to changing business needs.

Implementation Process

  1. Assessment and Planning
    • Conducted a thorough assessment of the existing network infrastructure to identify bottlenecks, inefficiencies, and security vulnerabilities.
    • Engaged with stakeholders across departments to gather insights on their network needs and pain points.
  2. Selecting SDN Solutions
    • Researched and evaluated various SDN solutions and vendors, considering factors like compatibility with existing systems, scalability, and security features.
    • Chose a hybrid SDN approach that allowed for a gradual transition from the traditional model to an SDN architecture.
  3. Pilot Deployment
    • Implemented a pilot SDN project in a controlled environment to test functionality and performance.
    • Monitored the pilot for issues and gathered feedback from users to refine the deployment.
  4. Full-Scale Deployment
    • Following successful pilot results, the full-scale implementation began, transitioning departments to the new SDN architecture incrementally.
    • Established a centralized SDN controller to manage network traffic dynamically and optimize resource allocation.
  5. Training and Development
    • Provided comprehensive training for the IT staff to familiarize them with the new SDN tools and management interfaces.
    • Encouraged continuous learning and certifications in networking and cybersecurity for team members.
  6. Security Enhancements
    • Implemented advanced security features within the SDN architecture, including micro-segmentation and automated threat detection.
    • Conducted regular security audits and penetration testing to identify vulnerabilities.

Results

  1. Improved Network Flexibility
    • The SDN implementation allowed XYZ Corporation to adapt to changing business requirements rapidly. New applications could be deployed with minimal configuration changes.
  2. Cost Reduction
    • Reduced operational costs by 30% within the first year due to decreased hardware dependency and simplified network management processes.
  3. Enhanced Security
    • The new architecture improved security posture through better visibility and control over network traffic. Security incidents decreased by 40% due to proactive threat detection mechanisms.
  4. Scalability
    • The network could now scale easily, accommodating increased traffic demands during peak business periods without significant downtime.
  5. Increased Employee Productivity
    • Employees reported improved network performance and reliability, leading to higher productivity and satisfaction levels.

Conclusion

The innovation of adopting Software-Defined Networking (SDN) at XYZ Corporation demonstrated a successful transformation of their network infrastructure. By prioritizing flexibility, cost-efficiency, security, and scalability, the company was able to meet the challenges of a dynamic business environment while enhancing overall operational performance. This case study highlights the importance of embracing innovative networking solutions to address modern organizational needs effectively.

White Paper on Basics Of Computer Networks Innovation

White Paper on Innovation in the Basics of Computer Networks

Abstract

The rapid evolution of technology has transformed the landscape of computer networks, necessitating innovative approaches to design, implementation, and management. This white paper explores the fundamental innovations in computer networks, focusing on emerging technologies, methodologies, and best practices that enhance network performance, security, scalability, and efficiency.

Introduction

As organizations increasingly rely on interconnected systems, the demand for robust, flexible, and secure networking solutions has never been greater. Traditional networking methods, characterized by hardware-centric designs and static configurations, are becoming inadequate to meet the dynamic needs of modern businesses. This paper discusses innovative concepts and trends in computer networks, including Software-Defined Networking (SDN), Network Function Virtualization (NFV), and the integration of artificial intelligence (AI) for network management.

1. Overview of Computer Networks

Computer networks facilitate the sharing of resources, data, and applications across interconnected devices. The core components of computer networks include:

  • Hardware: Routers, switches, servers, and endpoints.
  • Software: Operating systems, network management tools, and applications.
  • Protocols: Rules governing data communication (e.g., TCP/IP, HTTP, and FTP).

1.1 Importance of Innovation

Innovation in networking is essential to address challenges such as:

  • Increased Traffic Demand: The explosion of data from IoT devices and cloud applications requires networks to handle more traffic without performance degradation.
  • Security Threats: As cyber threats evolve, networks must adopt innovative security measures to protect sensitive data.
  • Scalability Needs: Organizations must scale their networks seamlessly to accommodate growth and changing requirements.

2. Key Innovations in Computer Networks

2.1 Software-Defined Networking (SDN)

SDN decouples the network control plane from the data plane, allowing for centralized management and dynamic configuration of network resources. Key benefits include:

  • Enhanced Flexibility: Quickly adapt to changing network conditions and business needs.
  • Cost Efficiency: Reduce dependency on expensive hardware and streamline network management.
  • Improved Security: Centralized control enables better monitoring and threat detection.

2.2 Network Function Virtualization (NFV)

NFV replaces dedicated hardware appliances with virtualized network functions running on standard servers. This innovation allows for:

  • Rapid Deployment: Quickly roll out new services without the need for physical hardware installation.
  • Scalability: Easily scale functions up or down based on demand.
  • Reduced Operational Costs: Minimize costs associated with hardware procurement and maintenance.

2.3 Artificial Intelligence in Networking

AI technologies are being integrated into network management to enhance performance and security. Applications include:

  • Automated Network Management: AI algorithms can predict traffic patterns, identify anomalies, and automate troubleshooting processes.
  • Enhanced Security: AI-driven solutions provide real-time threat detection and response, reducing the time to mitigate security incidents.
  • Optimized Performance: Machine learning can optimize routing and resource allocation based on usage patterns.

3. Best Practices for Implementing Innovations

3.1 Assess Organizational Needs

Before implementing any innovative solution, organizations must assess their specific networking needs, considering factors such as traffic patterns, security requirements, and scalability goals.

3.2 Engage Stakeholders

Involve key stakeholders from various departments to gather insights and ensure that the innovations align with overall business objectives.

3.3 Pilot Testing

Conduct pilot projects to test new technologies and processes in controlled environments. Gather feedback to refine implementations before full-scale deployment.

3.4 Continuous Training and Development

Invest in training programs for IT staff to ensure they are well-equipped to manage and leverage new networking technologies effectively.

3.5 Regular Monitoring and Adaptation

Establish ongoing monitoring to assess the performance of implemented innovations. Be prepared to adapt strategies and technologies as new challenges and opportunities arise.

4. Conclusion

Innovation in the basics of computer networks is vital for organizations seeking to enhance their operational efficiency, security, and adaptability in an increasingly complex digital landscape. By embracing emerging technologies such as SDN, NFV, and AI, organizations can build more resilient and scalable network infrastructures. Continuous assessment, stakeholder engagement, and training will further enable successful innovation in networking practices.

5. References

  • Kim, H., & Feamster, N. (2013). “Improving network management with SDN.” ACM SIGCOMM Computer Communication Review.
  • Mijumbi, R., et al. (2016). “Designing and deploying NFV-based networks: A survey.” IEEE Communications Surveys & Tutorials.
  • Wang, H., et al. (2020). “Artificial intelligence in networking: A review.” IEEE Network.

Books

  1. ^ Sterling, Christopher H., ed. (2008). Military Communications: From Ancient Times to the 21st CenturyABC-Clio. p. 399. ISBN 978-1-85109-737-1.
  2. ^ Haigh, Thomas; Ceruzzi, Paul E. (14 September 2021). A New History of Modern ComputingMIT Press. pp. 87–89. ISBN 978-0262542906.
  3. ^ Ulmann, Bernd (August 19, 2014). AN/FSQ-7: the computer that shaped the Cold WarDe GruyterISBN 978-3-486-85670-5.
  4. ^ Corbató, F. J.; et al. (1963). The Compatible Time-Sharing System A Programmer’s Guide] (PDF). MIT Press. ISBN 978-0-262-03008-3Archived (PDF) from the original on 2012-05-27. Retrieved 2020-05-26Shortly after the first paper on time-shared computers by C. Strachey at the June 1959 UNESCO Information Processing conference, H. M. Teager and J. McCarthy at MIT delivered an unpublished paper “Time-shared Program Testing” at the August 1959 ACM Meeting.
  5. ^ “Computer Pioneers – Christopher Strachey”history.computer.orgArchived from the original on 2019-05-15. Retrieved 2020-01-23.
  6. ^ “Reminiscences on the Theory of Time-Sharing”jmc.stanford.edu. Archived from the original on 2020-04-28. Retrieved 2020-01-23.
  7. ^ “Computer – Time-sharing and minicomputers”Encyclopedia BritannicaArchived from the original on 2015-01-02. Retrieved 2020-01-23.
  8. ^ Gillies, James M.; Gillies, James; Gillies, James and Cailliau Robert; Cailliau, R. (2000). How the Web was Born: The Story of the World Wide Web. Oxford University Press. pp. 13ISBN 978-0-19-286207-5.
  9. ^ Kitova, O. “Kitov Anatoliy Ivanovich. Russian Virtual Computer Museum”computer-museum.ru. Translated by Alexander Nitusov. Archived from the original on 2023-02-04. Retrieved 2021-10-11.
  10. ^ Peters, Benjamin (25 March 2016). How Not to Network a Nation: The Uneasy History of the Soviet Internet. MIT Press. ISBN 978-0262034180.
  11. ^ Baran, Paul (2002). “The beginnings of packet switching: some underlying concepts” (PDF)IEEE Communications Magazine40 (7): 42–48. doi:10.1109/MCOM.2002.1018006ISSN 0163-6804Archived (PDF) from the original on 2022-10-10. Essentially all the work was defined by 1961, and fleshed out and put into formal written form in 1962. The idea of hot potato routing dates from late 1960.
  12. ^ Roberts, Lawrence G. (November 1978). “The evolution of packet switching” (PDF)Proceedings of the IEEE66 (11): 1307–13. doi:10.1109/PROC.1978.11141ISSN 0018-9219S2CID 26876676Almost immediately after the 1965 meeting, Davies conceived of the details of a store-and-forward packet switching system.
  13. ^ Isaacson, Walter (2014). The Innovators: How a Group of Hackers, Geniuses, and Geeks Created the Digital Revolution. Simon and Schuster. pp. 237–246. ISBN 9781476708690Archived from the original on 2023-02-04. Retrieved 2021-06-04.
  14. Jump up to:a b Roberts, Lawrence G. (November 1978). “The evolution of packet switching” (PDF)Proceedings of the IEEE66 (11): 1307–13. doi:10.1109/PROC.1978.11141S2CID 26876676Archived (PDF) from the original on 2023-02-04. Retrieved 2022-02-12Both Paul Baran and Donald Davies in their original papers anticipated the use of T1 trunks
  15. ^ “NIHF Inductee Paul Baran, Who Invented Packet Switching”. National Inventors Hall of Fame. Archived from the original on 2022-02-12. Retrieved 2022-02-12.
  16. ^ “NIHF Inductee Donald Davies, Who Invented Packet Switching”. National Inventors Hall of Fame. Archived from the original on 2022-02-12. Retrieved 2022-02-12.
  17. ^ Baran, P. (1964). “On Distributed Communications Networks”IEEE Transactions on Communications12 (1): 1–9. doi:10.1109/TCOM.1964.1088883ISSN 0096-2244.
  18. ^ Kleinrock, L. (1978). “Principles and lessons in packet communications”Proceedings of the IEEE66 (11): 1320–1329. doi:10.1109/PROC.1978.11143ISSN 0018-9219Paul Baran … focused on the routing procedures and on the survivability of distributed communication systems in a hostile environment, but did not concentrate on the need for resource sharing in its form as we now understand it; indeed, the concept of a software switch was not present in his work.
  19. ^ Pelkey, James L. “6.1 The Communications Subnet: BBN 1969”Entrepreneurial Capitalism and Innovation: A History of Computer Communications 1968–1988As Kahn recalls: … Paul Baran’s contributions … I also think Paul was motivated almost entirely by voice considerations. If you look at what he wrote, he was talking about switches that were low-cost electronics. The idea of putting powerful computers in these locations hadn’t quite occurred to him as being cost effective. So the idea of computer switches was missing. The whole notion of protocols didn’t exist at that time. And the idea of computer-to-computer communications was really a secondary concern.
  20. ^ Waldrop, M. Mitchell (2018). The Dream Machine. Stripe Press. p. 286. ISBN 978-1-953953-36-0Baran had put more emphasis on digital voice communications than on computer communications.
  21. ^ Yates, David M. (1997). Turing’s Legacy: A History of Computing at the National Physical Laboratory 1945-1995. National Museum of Science and Industry. pp. 132–4. ISBN 978-0-901805-94-2Davies’s invention of packet switching and design of computer communication networks … were a cornerstone of the development which led to the Internet
  22. ^ Naughton, John (2000) [1999]. A Brief History of the Future. Phoenix. p. 292. ISBN 9780753810934.
  23. Jump up to:a b Campbell-Kelly, Martin (1987). “Data Communications at the National Physical Laboratory (1965-1975)”Annals of the History of Computing9 (3/4): 221–247. doi:10.1109/MAHC.1987.10023S2CID 8172150the first occurrence in print of the term protocol in a data communications context … the next hardware tasks were the detailed design of the interface between the terminal devices and the switching computer, and the arrangements to secure reliable transmission of packets of data over the high-speed lines
  24. ^ Davies, Donald; Bartlett, Keith; Scantlebury, Roger; Wilkinson, Peter (October 1967). A Digital Communication Network for Computers Giving Rapid Response at remote Terminals (PDF). ACM Symposium on Operating Systems Principles. Archived (PDF) from the original on 2022-10-10. Retrieved 2020-09-15. “all users of the network will provide themselves with some kind of error control”
  25. ^ Scantlebury, R. A.; Wilkinson, P.T. (1974). “The National Physical Laboratory Data Communications Network”Proceedings of the 2nd ICCC 74. pp. 223–228.
  26. ^ Guardian Staff (2013-06-25). “Internet pioneers airbrushed from history”The GuardianISSN 0261-3077Archived from the original on 2020-01-01. Retrieved 2020-07-31This was the first digital local network in the world to use packet switching and high-speed links.
  27. ^ “The real story of how the Internet became so vulnerable”Washington Post. Archived from the original on 2015-05-30. Retrieved 2020-02-18Historians credit seminal insights to Welsh scientist Donald W. Davies and American engineer Paul Baran
  28. ^ Roberts, Lawrence G. (November 1978). “The Evolution of Packet Switching” (PDF)IEEE Invited Paper. Archived from the original (PDF) on 31 December 2018. Retrieved September 10, 2017In nearly all respects, Davies’ original proposal, developed in late 1965, was similar to the actual networks being built today.
  29. ^ Norberg, Arthur L.; O’Neill, Judy E. (1996). Transforming computer technology: information processing for the Pentagon, 1962-1986. Johns Hopkins studies in the history of technology New series. Baltimore: Johns Hopkins Univ. Press. pp. 153–196. ISBN 978-0-8018-5152-0. Prominently cites Baran and Davies as sources of inspiration.
  30. ^ A History of the ARPANET: The First Decade (PDF) (Report). Bolt, Beranek & Newman Inc. 1 April 1981. pp. 13, 53 of 183 (III-11 on the printed copy). Archived from the original on 1 December 2012. Aside from the technical problems of interconnecting computers with communications circuits, the notion of computer networks had been considered in a number of places from a theoretical point of view. Of particular note was work done by Paul Baran and others at the Rand Corporation in a study “On Distributed Communications” in the early 1960’s. Also of note was work done by Donald Davies and others at the National Physical Laboratory in England in the mid-1960’s. … Another early major network development which affected development of the ARPANET was undertaken at the National Physical Laboratory in Middlesex, England, under the leadership of D. W. Davies.
  31. ^ Chris Sutton. “Internet Began 35 Years Ago at UCLA with First Message Ever Sent Between Two Computers”UCLA. Archived from the original on 2008-03-08.
  32. ^ Roberts, Lawrence G. (November 1978). “The evolution of packet switching” (PDF)Proceedings of the IEEE66 (11): 1307–13. doi:10.1109/PROC.1978.11141S2CID 26876676Significant aspects of the network’s internal operation, such as routing, flow control, software design, and network control were developed by a BBN team consisting of Frank Heart, Robert Kahn, Severo Omstein, William Crowther, and David Walden
  33. ^ F.E. Froehlich, A. Kent (1990). The Froehlich/Kent Encyclopedia of Telecommunications: Volume 1 – Access Charges in the U.S.A. to Basics of Digital Communications. CRC Press. p. 344. ISBN 0824729005Although there was considerable technical interchange between the NPL group and those who designed and implemented the ARPANET, the NPL Data Network effort appears to have had little fundamental impact on the design of ARPANET. Such major aspects of the NPL Data Network design as the standard network interface, the routing algorithm, and the software structure of the switching node were largely ignored by the ARPANET designers. There is no doubt, however, that in many less fundamental ways the NPL Data Network had and effect on the design and evolution of the ARPANET.
  34. ^ Heart, F.; McKenzie, A.; McQuillian, J.; Walden, D. (January 4, 1978). Arpanet Completion Report (PDF) (Technical report). Burlington, MA: Bolt, Beranek and Newman.
  35. ^ Clarke, Peter (1982). Packet and circuit-switched data networks (PDF) (PhD thesis). Department of Electrical Engineering, Imperial College of Science and Technology, University of London. “Many of the theoretical studies of the performance and design of the ARPA Network were developments of earlier work by Kleinrock … Although these works concerned message switching networks, they were the basis for a lot of the ARPA network investigations … The intention of the work of Kleinrock [in 1961] was to analyse the performance of store and forward networks, using as the primary performance measure the average message delay. … Kleinrock [in 1970] extended the theoretical approaches of [his 1961 work] to the early ARPA network.”
  36. ^ Davies, Donald Watts (1979). Computer networks and their protocols. Internet Archive. Wiley. pp. See page refs highlighted at url. ISBN 978-0-471-99750-4In mathematical modelling use is made of the theories of queueing processes and of flows in networks, describing the performance of the network in a set of equations. … The analytic method has been used with success by Kleinrock and others, but only if important simplifying assumptions are made. … It is heartening in Kleinrock’s work to see the good correspondence achieved between the results of analytic methods and those of simulation.
  37. ^ Davies, Donald Watts (1979). Computer networks and their protocols. Internet Archive. Wiley. pp. 110–111. ISBN 978-0-471-99750-4Hierarchical addressing systems for network routing have been proposed by Fultz and, in greater detail, by McQuillan. A recent very full analysis may be found in Kleinrock and Kamoun.
  38. ^ Feldmann, Anja; Cittadini, Luca; Mühlbauer, Wolfgang; Bush, Randy; Maennel, Olaf (2009). “HAIR: Hierarchical architecture for internet routing” (PDF)Proceedings of the 2009 workshop on Re-architecting the internet. ReArch ’09. New York, NY, USA: Association for Computing Machinery. pp. 43–48. doi:10.1145/1658978.1658990ISBN 978-1-60558-749-3S2CID 2930578The hierarchical approach is further motivated by theoretical results (e.g., [16]) which show that, by optimally placing separators, i.e., elements that connect levels in the hierarchy, tremendous gain can be achieved in terms of both routing table size and update message churn. … [16] KLEINROCK, L., AND KAMOUN, F. Hierarchical routing for large networks: Performance evaluation and optimization. Computer Networks (1977).
  39. ^ Derek Barber. “The Origins of Packet Switching”Computer Resurrection Issue 5. Retrieved 2024-06-05The Spanish, dark horses, were the first people to have a public network. They’d got a bank network which they craftily turned into a public network overnight, and beat everybody to the post.
  40. ^ Després, R. (1974). “RCP, the Experimental Packet-Switched Data Transmission Service of the French PTT”Proceedings of ICCC 74. pp. 171–185. Archived from the original on 2013-10-20. Retrieved 2013-08-30.
  41. ^ Bennett, Richard (September 2009). “Designed for Change: End-to-End Arguments, Internet Innovation, and the Net Neutrality Debate” (PDF). Information Technology and Innovation Foundation. p. 11. Archived from the original (PDF) on 2019-08-29. Retrieved 2017-09-11.
  42. ^ Kirstein, P.T. (1999). “Early experiences with the Arpanet and Internet in the United Kingdom”. IEEE Annals of the History of Computing21 (1): 38–44. doi:10.1109/85.759368S2CID 1558618.
  43. ^ Kirstein, Peter T. (2009). “The early history of packet switching in the UK”. IEEE Communications Magazine47 (2): 18–26. doi:10.1109/MCOM.2009.4785372S2CID 34735326.
  44. ^ Taylor, Bob (October 11, 2008), “Oral History of Robert (Bob) W. Taylor” (PDF)Computer History Museum Archive, CHM Reference number: X5059.2009: 28
  45. ^ Cerf, V.; Kahn, R. (1974). “A Protocol for Packet Network Intercommunication” (PDF)IEEE Transactions on Communications22 (5): 637–648. doi:10.1109/TCOM.1974.1092259ISSN 1558-0857The authors wish to thank a number of colleagues for helpful comments during early discussions of international network protocols, especially R. Metcalfe, R. Scantlebury, D. Walden, and H. Zimmerman; D. Davies and L. Pouzin who constructively commented on the fragmentation and accounting issues; and S. Crocker who commented on the creation and destruction of associations.
  46. ^ Cerf, Vinton; dalal, Yogen; Sunshine, Carl (December 1974). Specification of Internet Transmission Control ProtocolIETFdoi:10.17487/RFC0675RFC 675.
  47. ^ Robert M. Metcalfe; David R. Boggs (July 1976). “Ethernet: Distributed Packet Switching for Local Computer Networks”Communications of the ACM19 (5): 395–404. doi:10.1145/360248.360253S2CID 429216.
  48. ^ Council, National Research; Sciences, Division on Engineering and Physical; Board, Computer Science and Telecommunications; Applications, Commission on Physical Sciences, Mathematics, and; Committee, NII 2000 Steering (1998-02-05). The Unpredictable Certainty: White Papers. National Academies Press. ISBN 978-0-309-17414-5Archived from the original on 2023-02-04. Retrieved 2021-03-08.
  49. Jump up to:a b Spurgeon, Charles E. (2000). Ethernet The Definitive Guide. O’Reilly & Associates. ISBN 1-56592-660-9.
  50. ^ “Introduction to Ethernet Technologies”www.wband.com. WideBand Products. Archived from the original on 2018-04-10. Retrieved 2018-04-09.
  51. ^ Pelkey, James L. (2007). “Yogen Dalal”Entrepreneurial Capitalism and Innovation: A History of Computer Communications, 1968-1988. Retrieved 2023-05-07.
  52. Jump up to:a b D. Andersen; H. Balakrishnan; M. Kaashoek; R. Morris (October 2001), Resilient Overlay NetworksAssociation for Computing Machineryarchived from the original on 2011-11-24, retrieved 2011-11-12
  53. ^ “End System Multicast”project web site. Carnegie Mellon University. Archived from the original on 2005-02-21. Retrieved 2013-05-25.
  54. Jump up to:a b Meyers, Mike (2012). CompTIA Network+ exam guide : (Exam N10-005) (5th ed.). New York: McGraw-Hill. ISBN 9780071789226OCLC 748332969.
  55. ^ A. Hooke (September 2000), Interplanetary Internet (PDF), Third Annual International Symposium on Advanced Radio Technologies, archived from the original (PDF) on 2012-01-13, retrieved 2011-11-12
  56. ^ “Bergen Linux User Group’s CPIP Implementation”. Blug.linux.no. Archived from the original on 2014-02-15. Retrieved 2014-03-01.
  57. ^ Bradley Mitchell. “bridge – network bridges”About.com. Archived from the original on 2008-03-28.
  58. ^ “Define switch”webopedia. September 1996. Archived from the original on 2008-04-08. Retrieved 2008-04-08.
  59. ^ Tanenbaum, Andrew S. (2003). Computer Networks (4th ed.). Prentice Hall.
  60. ^ “IEEE Standard for Local and Metropolitan Area Networks–Port-Based Network Access Control”IEEE STD 802.1X-2020 (Revision of IEEE STD 802.1X-2010 Incorporating IEEE STD 802.1Xbx-2014 and IEEE STD 802.1Xck-2018). 7.1.3 Connectivity to unauthenticated systems. February 2020. doi:10.1109/IEEESTD.2020.9018454ISBN 978-1-5044-6440-6Archived from the original on 2023-02-04. Retrieved 2022-05-09.
  61. ^ “IEEE Standard for Information Technology–Telecommunications and Information Exchange between Systems – Local and Metropolitan Area Networks–Specific Requirements – Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications”IEEE STD 802.11-2020 (Revision of IEEE STD 802.11-2016). 4.2.5 Interaction with other IEEE 802 layers. February 2021. doi:10.1109/IEEESTD.2021.9363693ISBN 978-1-5044-7283-8Archived from the original on 2022-05-17. Retrieved 2022-05-09.
  62. ^ Martin, Thomas. “Design Principles for DSL-Based Access Solutions” (PDF). Archived from the original (PDF) on 2011-07-22.
  63. ^ Paetsch, Michael (1993). The evolution of mobile communications in the US and Europe: Regulation, technology, and markets. Boston, London: Artech House. ISBN 978-0-8900-6688-1.
  64. ^ Bush, S. F. (2010). Nanoscale Communication Networks. Artech House. ISBN 978-1-60807-003-9.
  65. ^ Margaret Rouse. “personal area network (PAN)”TechTargetArchived from the original on 2023-02-04. Retrieved 2011-01-29.
  66. ^ “New global standard for fully networked home”ITU-T NewslogITU. 2008-12-12. Archived from the original on 2009-02-21. Retrieved 2011-11-12.
  67. ^ “IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet Task Force”IEEE 802.3 ETHERNET WORKING GROUPArchived from the original on 2011-11-20. Retrieved 2011-11-12.
  68. ^ “IEEE 802.20 Mission and Project Scope”IEEE 802.20 — Mobile Broadband Wireless Access (MBWA). Retrieved 2011-11-12.
  69. ^ “Maps”The Opto Project. Archived from the original on 2005-01-15.
  70. ^ Mansfield-Devine, Steve (December 2009). “Darknets”. Computer Fraud & Security2009 (12): 4–6. doi:10.1016/S1361-3723(09)70150-2.
  71. ^ Wood, Jessica (2010). “The Darknet: A Digital Copyright Revolution” (PDF)Richmond Journal of Law and Technology16 (4). Archived (PDF) from the original on 2012-04-15. Retrieved 2011-10-25.
  72. ^ Klensin, J. (October 2008). Simple Mail Transfer Protocoldoi:10.17487/RFC5321RFC 5321.
  73. ^ Mockapetris, P. (November 1987). Domain names – Implementation and Specificationdoi:10.17487/RFC1035RFC 1035.
  74. ^ Peterson, L.L.; Davie, B.S. (2011). Computer Networks: A Systems Approach (5th ed.). Elsevier. p. 372. ISBN 978-0-1238-5060-7.
  75. ^ ITU-D Study Group 2 (June 2006). Teletraffic Engineering Handbook (PDF). Archived from the original (PDF) on 2007-01-11.
  76. ^ “Telecommunications Magazine Online”. January 2003. Archived from the original on 2011-02-08.
  77. ^ “State Transition Diagrams”. Archived from the original on 2003-10-15. Retrieved 2003-07-13.
  78. ^ “Definitions: Resilience”. ResiliNets Research Initiative. Archived from the original on 2020-11-06. Retrieved 2011-11-12.
  79. ^ Simmonds, A; Sandilands, P; van Ekert, L (2004). “An Ontology for Network Security Attacks”. Applied Computing. Lecture Notes in Computer Science. Vol. 3285. pp. 317–323. doi:10.1007/978-3-540-30176-9_41ISBN 978-3-540-23659-7S2CID 2204780.
  80. Jump up to:a b “Is the U.S. Turning Into a Surveillance Society?”. American Civil Liberties Union. Archived from the original on 2017-03-14. Retrieved 2009-03-13.
  81. ^ Jay Stanley; Barry Steinhardt (January 2003). “Bigger Monster, Weaker Chains: The Growth of an American Surveillance Society” (PDF). American Civil Liberties Union. Archived (PDF) from the original on 2022-10-09. Retrieved 2009-03-13.
  82. ^ Emil Protalinski (2012-04-07). “Anonymous hacks UK government sites over ‘draconian surveillance'”ZDNet. Archived from the original on 2013-04-03. Retrieved 12 March 2013.
  83. ^ James Ball (2012-04-20). “Hacktivists in the frontline battle for the internet”The GuardianArchived from the original on 2018-03-14. Retrieved 2012-06-17.
  84. Jump up to:a b Rosen, E.; Rekhter, Y. (March 1999). BGP/MPLS VPNsdoi:10.17487/RFC2547RFC 2547.
  85. Labrador, Miguel A.; Perez, Alfredo J.; Wightman, Pedro M. (2010). Location-Based Information Systems Developing Real-Time Tracking Applications. CRC Press. ISBN 9781000556803.
  86. ^ Vinton G. Cerf; Robert E. Kahn (May 1974). A Protocol for Packet Network Intercommunication (PDF)IEEE Transactions on Communications22 (5): 637–648. doi:10.1109/tcom.1974.1092259. Archived from the original (PDF) on March 4, 2016.
  87. ^ Bennett, Richard (September 2009). “Designed for Change: End-to-End Arguments, Internet Innovation, and the Net Neutrality Debate” (PDF). Information Technology and Innovation Foundation. p. 11. Archived (PDF) from the original on 29 August 2019. Retrieved 11 September 2017.
  88. ^ RFC 675.
  89. ^ Russell, Andrew Lawrence (2008). ‘Industrial Legislatures’: Consensus Standardization in the Second and Third Industrial Revolutions (Thesis). “See Abbate, Inventing the Internet, 129–30; Vinton G. Cerf (October 1980). “Protocols for Interconnected Packet Networks”. ACM SIGCOMM Computer Communication Review10 (4): 10–11.; and RFC 760doi:10.17487/RFC0760.
  90. ^ Postel, Jon (15 August 1977), Comments on Internet Protocol and TCP, IEN 2, archived from the original on May 16, 2019, retrieved June 11, 2016We are screwing up in our design of internet protocols by violating the principle of layering. Specifically we are trying to use TCP to do two things: serve as a host level end to end protocol, and to serve as an internet packaging and routing protocol. These two things should be provided in a layered and modular way.
  91. ^ Cerf, Vinton G. (1 April 1980). “Final Report of the Stanford University TCP Project”.
  92. ^ Cerf, Vinton G; Cain, Edward (October 1983). “The DoD internet architecture model”. Computer Networks7 (5): 307–318. doi:10.1016/0376-5075(83)90042-9.
  93. ^ “The TCP/IP Guide – TCP/IP Architecture and the TCP/IP Model”www.tcpipguide.com. Retrieved 2020-02-11.
  94. ^ “Internet Experiment Note Index”www.rfc-editor.org. Retrieved 2024-01-21.
  95. ^ “Robert E Kahn – A.M. Turing Award Laureate”amturing.acm.orgArchived from the original on 2019-07-13. Retrieved 2019-07-13.
  96. ^ “Vinton Cerf – A.M. Turing Award Laureate”amturing.acm.orgArchived from the original on 2021-10-11. Retrieved 2019-07-13.
  97. Jump up to:a b c d e f g h i Comer, Douglas E. (2006). Internetworking with TCP/IP: Principles, Protocols, and Architecture. Vol. 1 (5th ed.). Prentice Hall. ISBN 978-0-13-187671-2.
  98. Jump up to:a b c RFC 9293, 2.2. Key TCP Concepts.
  99. ^ RFC 791, pp. 5–6.
  100. Jump up to:a b c d RFC 9293.
  101. Jump up to:a b c RFC 9293, 3.1. Header Format.
  102. ^ RFC 9293, 3.8.5 The Communication of Urgent Information.
  103. ^ RFC 9293, 3.4. Sequence Numbers.
  104. ^ RFC 9293, 3.4.1. Initial Sequence Number Selection.
  105. ^ “Change RFC 3540 “Robust Explicit Congestion Notification (ECN) Signaling with Nonces” to Historic”datatracker.ietf.org. Retrieved 2023-04-18.
  106. ^ RFC 3168, p. 13-14.
  107. ^ RFC 3168, p. 15.
  108. ^ RFC 3168, p. 18-19.
  109. ^ RFC 793.
  110. Jump up to:a b c RFC 7323.
  111. ^ RFC 2018, 2. Sack-Permitted Option.
  112. ^ RFC 2018, 3. Sack Option Format.
  113. ^ Heffernan, Andy (August 1998). “Protection of BGP Sessions via the TCP MD5 Signature Option”. IETF. Retrieved 2023-12-30.
  114. ^ “Transmission Control Protocol (TCP) Parameters: TCP Option Kind Numbers”. IANA. Archived from the original on 2017-10-02. Retrieved 2017-10-19.
  115. ^ RFC 9293, 3.3.2. State Machine Overview.
  116. ^ Kurose, James F. (2017). Computer networking : a top-down approach. Keith W. Ross (7th ed.). Harlow, England. p. 286. ISBN 978-0-13-359414-0OCLC 936004518.
  117. ^ Tanenbaum, Andrew S. (2003-03-17). Computer Networks (Fourth ed.). Prentice Hall. ISBN 978-0-13-066102-9.
  118. ^ RFC 1122, 4.2.2.13. Closing a Connection.
  119. ^ Karn & Partridge 1991, p. 364.
  120. ^ RFC 9002, 4.2. Monotonically Increasing Packet Numbers.
  121. ^ Mathis; Mathew; Semke; Mahdavi; Ott (1997). “The macroscopic behavior of the TCP congestion avoidance algorithm”. ACM SIGCOMM Computer Communication Review27 (3): 67–82. CiteSeerX 10.1.1.40.7002doi:10.1145/263932.264023S2CID 1894993.
  122. ^ RFC 3522, p. 4.
  123. ^ Leung, Ka-cheong; Li, Victor O.k.; Yang, Daiqin (2007). “An Overview of Packet Reordering in Transmission Control Protocol (TCP): Problems, Solutions, and Challenges”IEEE Transactions on Parallel and Distributed Systems18 (4): 522–535. doi:10.1109/TPDS.2007.1011.
  124. ^ Johannessen, Mads (2015). Investigate reordering in Linux TCP (MSc thesis). University of Oslo.
  125. ^ Cheng, Yuchung (2015). RACK: a time-based fast loss detection for TCP draft-cheng-tcpm-rack-00 (PDF). IETF94. Yokohama: IETF.
  126. ^ RFC 8985.
  127. ^ Cheng, Yuchung; Cardwell, Neal; Dukkipati, Nandita; Jha, Priyaranjan (2017). RACK: a time-based fast loss recovery draft-ietf-tcpm-rack-02 (PDF). IETF100. Yokohama: IETF.
  128. ^ RFC 6298, p. 2.
  129. Jump up to:a b Zhang 1986, p. 399.
  130. ^ Karn & Partridge 1991, p. 365.
  131. ^ Ludwig & Katz 2000, p. 31-33.
  132. ^ Gurtov & Ludwig 2003, p. 2.
  133. ^ Gurtov & Floyd 2004, p. 1.
  134. Jump up to:a b RFC 6298, p. 4.
  135. ^ Karn & Partridge 1991, p. 370-372.
  136. ^ Allman & Paxson 1999, p. 268.
  137. ^ RFC 7323, p. 7.
  138. ^ Stone; Partridge (2000). “When the CRC and TCP checksum disagree”Proceedings of the conference on Applications, Technologies, Architectures, and Protocols for Computer CommunicationACM SIGCOMM Computer Communication Review. pp. 309–319. CiteSeerX 10.1.1.27.7611doi:10.1145/347059.347561ISBN 978-1581132236S2CID 9547018Archived from the original on 2008-05-05. Retrieved 2008-04-28.
  139. ^ RFC 5681.
  140. ^ RFC 6298.
  141. ^ RFC 1122.
  142. ^ RFC 2018, p. 10.
  143. ^ RFC 9002, 4.4. No Reneging.
  144. ^ “TCP window scaling and broken routers”LWN.netArchived from the original on 2020-03-31. Retrieved 2016-07-21.
  145. ^ RFC 3522.
  146. ^ “IP sysctl”Linux Kernel DocumentationArchived from the original on 5 March 2016. Retrieved 15 December 2018.
  147. ^ Wang, Eve. “TCP timestamp is disabled”Technet – Windows Server 2012 Essentials. Microsoft. Archived from the original on 2018-12-15. Retrieved 2018-12-15.
  148. ^ David Murray; Terry Koziniec; Sebastian Zander; Michael Dixon; Polychronis Koutsakis (2017). “An Analysis of Changing Enterprise Network Traffic Characteristics” (PDF). The 23rd Asia-Pacific Conference on Communications (APCC 2017). Archived (PDF) from the original on 3 October 2017. Retrieved 3 October 2017.
  149. ^ Gont, Fernando (November 2008). “On the implementation of TCP urgent data”. 73rd IETF meeting. Archived from the original on 2019-05-16. Retrieved 2009-01-04.
  150. ^ Peterson, Larry (2003). Computer Networks. Morgan Kaufmann. p. 401ISBN 978-1-55860-832-0.
  151. ^ Richard W. Stevens (November 2011). TCP/IP Illustrated. Vol. 1, The protocols. Addison-Wesley. pp. Chapter 20. ISBN 978-0-201-63346-7.
  152. ^ “Security Assessment of the Transmission Control Protocol (TCP)” (PDF). Archived from the original on March 6, 2009. Retrieved 2010-12-23.
  153. ^ Survey of Security Hardening Methods for Transmission Control Protocol (TCP) Implementations
  154. ^ Jakob Lell (13 August 2013). “Quick Blind TCP Connection Spoofing with SYN Cookies”Archived from the original on 2014-02-22. Retrieved 2014-02-05.
  155. ^ “Some insights about the recent TCP DoS (Denial of Service) vulnerabilities” (PDF). Archived from the original (PDF) on 2013-06-18. Retrieved 2010-12-23.
  156. ^ “Exploiting TCP and the Persist Timer Infiniteness”Archived from the original on 2010-01-22. Retrieved 2010-01-22.
  157. ^ “PUSH and ACK Flood”f5.comArchived from the original on 2017-09-28. Retrieved 2017-09-27.
  158. ^ Laurent Joncheray (1995). “Simple Active Attack Against TCP” (PDF). Retrieved 2023-06-04.
  159. ^ John T. Hagen; Barry E. Mullins (2013). “TCP veto: A novel network attack and its Application to SCADA protocols”. 2013 IEEE PES Innovative Smart Grid Technologies Conference (ISGT)Innovative Smart Grid Technologies (ISGT), 2013 IEEE PES. pp. 1–6. doi:10.1109/ISGT.2013.6497785ISBN 978-1-4673-4896-6S2CID 25353177.
  160. ^ RFC 9293, 4. Glossary.
  161. ^ RFC 8095, p. 6.
  162. ^ Paasch & Bonaventure 2014, p. 51.
  163. ^ RFC 6182.
  164. ^ RFC 6824.
  165. ^ Raiciu; Barre; Pluntke; Greenhalgh; Wischik; Handley (2011). “Improving datacenter performance and robustness with multipath TCP”ACM SIGCOMM Computer Communication Review41 (4): 266. CiteSeerX 10.1.1.306.3863doi:10.1145/2043164.2018467. Archived from the original on 2020-04-04. Retrieved 2011-06-29.
  166. ^ “MultiPath TCP – Linux Kernel implementation”Archived from the original on 2013-03-27. Retrieved 2013-03-24.
  167. ^ Raiciu; Paasch; Barre; Ford; Honda; Duchene; Bonaventure; Handley (2012). “How Hard Can It Be? Designing and Implementing a Deployable Multipath TCP”Usenix NSDI: 399–412. Archived from the original on 2013-06-03. Retrieved 2013-03-24.
  168. ^ Bonaventure; Seo (2016). “Multipath TCP Deployments”IETF JournalArchived from the original on 2020-02-23. Retrieved 2017-01-03.
  169. ^ Cryptographic Protection of TCP Streams (tcpcrypt). May 2019. doi:10.17487/RFC8548RFC 8548.
  170. ^ Michael Kerrisk (2012-08-01). “TCP Fast Open: expediting web services”LWN.netArchived from the original on 2014-08-03. Retrieved 2014-07-21.
  171. ^ RFC 7413.
  172. ^ RFC 6937.
  173. ^ Grigorik, Ilya (2013). High-performance browser networking (1. ed.). Beijing: O’Reilly. ISBN 978-1449344764.
  174. ^ RFC 6013.
  175. ^ RFC 7805.
  176. ^ RFC 8546, p. 6.
  177. ^ RFC 8558, p. 3.
  178. ^ RFC 9065, 2. Current Uses of Transport Headers within the Network.
  179. ^ RFC 9065, 3. Research, Development, and Deployment.
  180. ^ RFC 8558, p. 8.
  181. ^ RFC 9170, 2.3. Multi-party Interactions and Middleboxes.
  182. ^ RFC 9170, A.5. TCP.
  183. ^ Papastergiou et al. 2017, p. 620.
  184. ^ Edeline & Donnet 2019, p. 175-176.
  185. ^ Raiciu et al. 2012, p. 1.
  186. ^ Hesmans et al. 2013, p. 1.
  187. Jump up to:a b Rybczyńska 2020.
  188. ^ Papastergiou et al. 2017, p. 621.
  189. ^ Corbet 2015.
  190. ^ Briscoe et al. 2016, pp. 29–30.
  191. ^ Marx 2020, HOL blocking in HTTP/1.1.
  192. ^ Marx 2020, Bonus: Transport Congestion Control.
  193. ^ IETF HTTP Working Group, Why just one TCP connection?.
  194. ^ Corbet 2018.
  195. Jump up to:a b RFC 7413, p. 3.
  196. ^ Sy et al. 2020, p. 271.
  197. ^ Chen et al. 2021, p. 8-9.
  198. ^ Ghedini 2018.
  199. ^ Chen et al. 2021, p. 3-4.
  200. ^ RFC 7413, p. 1.
  201. ^ Blanton & Allman 2002, p. 1-2.
  202. ^ Blanton & Allman 2002, p. 4-5.
  203. ^ Blanton & Allman 2002, p. 3-4.
  204. ^ Blanton & Allman 2002, p. 6-8.
  205. ^ Bruyeron, Hemon & Zhang 1998, p. 67.
  206. ^ Bruyeron, Hemon & Zhang 1998, p. 72.
  207. ^ Bhat, Rizk & Zink 2017, p. 14.
  208. ^ RFC 9002, 4.5. More ACK Ranges.
  209. Jump up to:a b “TCP performance over CDMA2000 RLP”. Archived from the original on 2011-05-03. Retrieved 2010-08-30.
  210. ^ Muhammad Adeel & Ahmad Ali Iqbal (2007). “TCP Congestion Window Optimization for CDMA2000 Packet Data Networks”. Fourth International Conference on Information Technology (ITNG’07). pp. 31–35. doi:10.1109/ITNG.2007.190ISBN 978-0-7695-2776-5S2CID 8717768.
  211. ^ “TCP Acceleration”. Archived from the original on 2024-04-22. Retrieved 2024-04-18.
  212. ^ Yunhong Gu, Xinwei Hong, and Robert L. Grossman. “An Analysis of AIMD Algorithm with Decreasing Increases” Archived 2016-03-05 at the Wayback Machine. 2004.
  213. ^ RFC 8200.
  214. ^ “Wireshark: Offloading”Archived from the original on 2017-01-31. Retrieved 2017-02-24Wireshark captures packets before they are sent to the network adapter. It won’t see the correct checksum because it has not been calculated yet. Even worse, most OSes don’t bother initialize this data so you’re probably seeing little chunks of memory that you shouldn’t. New installations of Wireshark 1.2 and above disable IP, TCP, and UDP checksum validation by default. You can disable checksum validation in each of those dissectors by hand if needed.
  215. ^ “Wireshark: Checksums”Archived from the original on 2016-10-22. Retrieved 2017-02-24Checksum offloading often causes confusion as the network packets to be transmitted are handed over to Wireshark before the checksums are actually calculated. Wireshark gets these “empty” checksums and displays them as invalid, even though the packets will contain valid checksums when they leave the network hardware later.
  216. “ETSI – Standards for NFV – Network Functions Virtualisation | NFV Solutions”.
  217. ^ “Network Functions Virtualisation (NFV); Use NFV is present and SDN is future” (PDF). Retrieved 6 June 2014.
  218. ^ Stephenson, Rick (2013-03-13). “How Low-Cost Telecom Killed Five 9s in Cloud Computing”Wired. Retrieved 2016-06-27.
  219. Jump up to:a b “Network Functions Virtualization— Introductory White Paper” (PDF). ETSI. 22 October 2012. Retrieved 20 June 2013.
  220. ^ “Network Functions Virtualisation”ETSI Standards for NFV. Retrieved 30 June 2020.
  221. ^ Le Maistre, Ray (22 October 2012). “Tier 1 Carriers Tackle Telco SDN”Light Reading. Retrieved 20 June 2013.
  222. ^ “Latest Agenda at SDN & OpenFlow World Congress”. Layer123.com. Archived from the original on October 14, 2012. Retrieved 20 June 2013.
  223. ^ “Standards for NFV: Network Functions Virtualisation”ETSI. NFV Solutions.
  224. ^ “Network-Functions Virtualization (NFV) Proofs of Concept”.
  225. ^ “What is Network Function Virtualization (NFV)”blog.datapath.io. Archived from the original on 2017-02-01. Retrieved 2017-01-20.
  226. ^ Ashton, Charlie (April 2014). “Don’t Confuse “High Availability” with “Carrier Grade””. Embedded Community. Archived from the original on 2017-07-03.
  227. ^ Tom Nolle (18 September 2013). “Is “Distributed NFV” Teaching Us Something?”CIMI Corporation’s Public Blog. Retrieved 2 January 2014.
  228. ^ Carol Wilson (3 October 2013). “RAD Rolls Out Distributed NFV Strategy”Light Reading. Retrieved 2 January 2014.
  229. ^ “4 Vendors Bring Distributed NFV to BTE”. Light Reading. June 11, 2014. Retrieved March 3, 2015.
  230. ^ “RAD launches customer-edge distributed NFV solution based on ETX NTU platform”Optical Keyhole. June 16, 2014. Retrieved March 3, 2015.
  231. ^ “RAD adds new partners to D-NFV Alliance”Telecompaper. December 9, 2014. Retrieved March 3, 2015.
  232. ^ TMCnet News (26 June 2014). “Qosmos Awarded a 2014 INTERNET TELEPHONY NFV Pioneer Award”TMC. Retrieved 26 June 2014.
  233. ^ “Platform to Multivendor Virtual and Physical Infrastructure”.
  234. ^ Liyanage, Madhusanka (2015). Software Defined Mobile Networks (SDMN): Beyond LTE Network Architecture. UK: John Wiley. pp. 1–438. ISBN 978-1-118-90028-4.
  235. ^ “Report on SDN Usage in NFV Architectural Framework” (PDF). ETSI. December 2015. Retrieved 7 December 2021.
  236. ^ “Network Functions Virtualization (NFV) Use Cases” (PDF).
  237. ^ “What’s NFV – Network Functions Virtualization?”. SDN Central.
  238. ^ “Carrier Network Virtualization”. ETSI news.
  239. ^ “Openwave Exec Discusses the Benefits, Challenges of NFV & SDN”Article. 12 November 2013. Archived from the original on 3 March 2016. Retrieved 22 November 2013.
  240. ^ Doyle, Lee. “Middleware for the NFV Generation”. Service Provider IT Report.
  241. ^ Sharma, Ray. “Wind River Launches NFV Ecosystem Program with Five Industry Leaders”. PCC Mobile Broadband.
  242. ^ Ashton, Charlie (January 2015). “Carrier-Grade Reliability—A “Must-Have” for NFV Success”. Electronic Design.
  243. ^ Lemke, Andreas (November 2014). “5 must-have attributes of an NFV platform”. Techzine, Alcatel-Lucent. Archived from the original on 2015-05-26.
  244. ^ “Why Service Providers Need an NFV Platform” (PDF). Intel Strategic paper. Archived from the original (PDF) on 2015-05-26.
  245. ^ “NFV Proof of Concept”. ETSI.
  246. ^ Wilson, Carol (16 September 2015). “New NFV Forum Focused on Interoperability”. Light Reading.
  247. ^ “OPNFV”. Linux Foundation Collaborative Projects Foundation.
  248. ^ “Carrier Network Virtualization Awards”. December 2015. Archived from the original on 2015-06-07.
  249. ^ Nolle, Tom (June 2014). “Wind River’s Ecosystemic Solution to NFV and Orchestration”. CIMI Corporation Public Blog.
  250. ^ Pettit, Justin (11 November 2014). “Accelerating Open vSwitch to “Ludicruos Speed””Network Heresy: Tales of the network reformation.
  251. ^ “Wind River Delivers Breakthrough Performance for Accelerated vSwitch Optimized for NFV”. Wind River News Room. May 2014.
  252. ^ “6WIND Announces Open vSwitch Acceleration for Red Hat Enterprise Linux OpenStack Platform”. PRweb. April 2014.
  253. ^ “Network Functions Virtualization Challenges and Solutions” (PDF). Alcatel-Lucent. 2013.
  254. ^ “NFV: The Myth of Application-Level High Availability”. Wind River. May 2015. Archived from the original on 2015-10-05.
  255. ^ Chatras, B. (December 2018). “On the Standardization of NFV Management and Orchestration APIs”. IEEE Communications Standards Magazine2 (4): 66–71. doi:10.1109/MCOMSTD.2018.1800032ISSN 2471-2825S2CID 59620488.
  256. ^ ETSI COMS TEAM. “ETSI – ETSI releases a standard for NFV Deployment Templates”ETSI. Retrieved 2019-07-09.
  257. ^ “Technology blogs, NFV, MEC, NGP, ZSM, ENI – SOL006 – NFV descriptors based on YANG Specification”www.etsi.org. Retrieved 2019-07-09.
  258. ^ Wang, Chengwei; Spatscheck, Oliver; Gopalakrishnan, Vijay; Xu, Yang; Applegate, David (2016). “Toward High-Performance and Scalable Network Functions Virtualization”IEEE Internet Computing20 (6): 10–20. doi:10.1109/MIC.2016.111S2CID 15518060.
  259. ^ “OpenNetVM: A Platform for High Performance Network Service Chains” (PDF)doi:10.1145/2940147.2940155S2CID 13706879. {{cite journal}}Cite journal requires |journal= (help)
  260. ^ “GitHub- OpenNetVM”GitHub.
  261. ^ “Cloud-Native Network Functions”Cisco. Retrieved 1 April 2021.
  262. Gartner. “Gartner Trend Insights report 2018” (PDF)GartnerArchived (PDF) from the original on 2020-12-18. Retrieved 2021-05-26.
  263. ^ “Globally Distributed Content Delivery, by J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman and B. Weihl, IEEE Internet Computing, Volume 6, Issue 5, November 2002” (PDF)Archived (PDF) from the original on 2017-08-09. Retrieved 2019-10-25.
  264. ^ Nygren., E.; Sitaraman R. K.; Sun, J. (2010). “The Akamai network: A platform for high-performance internet applications” (PDF)ACM SIGOPS Operating Systems Review44 (3): 2–19. doi:10.1145/1842733.1842736S2CID 207181702Archived (PDF) from the original on September 13, 2012. Retrieved November 19, 2012See Section 6.2: Distributing Applications to the Edge
  265. ^ Davis, A.; Parikh, J.; Weihl, W. (2004). “Edgecomputing: Extending enterprise applications to the edge of the internet”. Proceedings of the 13th international World Wide Web conference on Alternate track papers & posters – WWW Alt. ’04. p. 180. doi:10.1145/1013367.1013397ISBN 1581139128S2CID 578337.
  266. ^ Gartner. “2021 Strategic Roadmap for Edge Computing”www.gartner.comArchived from the original on 2021-03-30. Retrieved 2021-07-11.
  267. ^ “IEEE DAC 2014 Keynote: Mobile Computing Opportunities, Challenges and Technology Drivers”. Archived from the original on 2020-07-30. Retrieved 2019-03-25.
  268. ^ MIT MTL Seminar: Trends, Opportunities and Challenges Driving Architecture and Design of Next Generation Mobile Computing and IoT Devices
  269. ^ “What is fog and edge computing?”Capgemini Worldwide. 2017-03-02. Retrieved 2021-07-06.
  270. ^ Dolui, Koustabh; Datta, Soumya Kanti (June 2017). “Comparison of edge computing implementations: Fog computing, cloudlet and mobile edge computing”2017 Global Internet of Things Summit (GIoTS). pp. 1–6. doi:10.1109/GIOTS.2017.8016213ISBN 978-1-5090-5873-0S2CID 11600169.
  271. ^ “Difference Between Edge Computing and Fog Computing”GeeksforGeeks. 2021-11-27. Retrieved 2022-09-11.
  272. ^ “Data at the Edge Report”Seagate Technology.
  273. ^ Reznik, Alex (2018-05-14). “What is Edge?”ETSI – ETSI Blog – etsi.org. Retrieved 2019-02-19What is ‘Edge’? The best that I can do is this: it’s anything that’s not a ‘data center cloud’.
  274. ^ Anand, B.; Edwin, A. J. Hao (January 2014). “Gamelets — Multiplayer mobile games with distributed micro-clouds”. 2014 Seventh International Conference on Mobile Computing and Ubiquitous Networking (ICMU). pp. 14–20. doi:10.1109/ICMU.2014.6799051ISBN 978-1-4799-2231-4S2CID 10374389.
  275. ^ “Edge virtualization manages the data deluge, but can be complex | TechTarget”IT Operations. Retrieved 2022-12-13.
  276. ^ Patrizio, Andy (2018-12-03). “IDC: Expect 175 zettabytes of data worldwide by 2025”Network World. Retrieved 2021-07-09.
  277. ^ “What We Do and How We Got Here”Gartner. Retrieved 2021-12-21.
  278. ^ Ivkovic, Jovan (2016-07-11). The Methods and Procedures for Accelerating Operations and Queries in Large Database Systems and Data Warehouse (Big Data Systems) (PDF)National Repository of Dissertations in Serbia (Doctoral thesis) (in Serbian and American English).
  279. Jump up to:a b c Shi, Weisong; Cao, Jie; Zhang, Quan; Li, Youhuizi; Xu, Lanyu (October 2016). “Edge Computing: Vision and Challenges”. IEEE Internet of Things Journal3 (5): 637–646. doi:10.1109/JIOT.2016.2579198S2CID 4237186.
  280. ^ Merenda, Massimo; Porcaro, Carlo; Iero, Demetrio (29 April 2020). “Edge Machine Learning for AI-Enabled IoT Devices: A Review”Sensors20 (9): 2533. Bibcode:2020Senso..20.2533Mdoi:10.3390/s20092533PMC 7273223PMID 32365645.
  281. ^ “IoT management”. Retrieved 2020-04-08.
  282. ^ Garcia Lopez, Pedro; Montresor, Alberto; Epema, Dick; Datta, Anwitaman; Higashino, Teruo; Iamnitchi, Adriana; Barcellos, Marinho; Felber, Pascal; Riviere, Etienne (30 September 2015). “Edge-centric Computing”ACM SIGCOMM Computer Communication Review45 (5): 37–42. doi:10.1145/2831347.2831354hdl:11572/114780.
  283. Jump up to:a b c 3 Advantages of Edge Computing. Aron Brand. Medium.com. Sep 20, 2019
  284. ^ Babar, Mohammad; Sohail Khan, Muhammad (July 2021). “ScalEdge: A framework for scalable edge computing in Internet of things–based smart systems”International Journal of Distributed Sensor Networks17 (7): 155014772110353. doi:10.1177/15501477211035332ISSN 1550-1477S2CID 236917011.
  285. ^ Liu, S.; Liu, L.; Tang, B. Wu; Wang, J.; Shi, W. (2019). “Edge Computing for Autonomous Driving: Opportunities and Challenges”Proceedings of the IEEE107 (8): 1697–1716. doi:10.1109/JPROC.2019.2915983S2CID 198311944Archived from the original on 2021-05-26. Retrieved 2021-05-26.
  286. ^ Yu, W.; et al. (2018). “A Survey on the Edge Computing for the Internet of Things”IEEE Access, vol. 6, pp. 6900-6919arXiv:2104.01776doi:10.1109/JIOT.2021.3072611S2CID 233025108Archived from the original on 2021-05-26. Retrieved 2021-05-26.
  287. Jump up to:a b Satyanarayanan, Mahadev (January 2017). “The Emergence of Edge Computing”Computer50 (1): 30–39. doi:10.1109/MC.2017.9ISSN 1558-0814S2CID 12563598.
  288. ^ Yi, S.; Hao, Z.; Qin, Z.; Li, Q. (November 2015). “Fog Computing: Platform and Applications”. 2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb). pp. 73–78. doi:10.1109/HotWeb.2015.22ISBN 978-1-4673-9688-2S2CID 6753944.
  289. ^ Verbelen, Tim; Simoens, Pieter; De Turck, Filip; Dhoedt, Bart (2012). “Cloudlets”Proceedings of the third ACM workshop on Mobile cloud computing and services. ACM. pp. 29–36. doi:10.1145/2307849.2307858hdl:1854/LU-2984272ISBN 9781450313193S2CID 3249347. Retrieved 4 July 2019.
  290. ^ Minh, Quy Nguyen; Nguyen, Van-Hau; Quy, Vu Khanh; Ngoc, Le Anh; Chehri, Abdellah; Jeon, Gwanggil (2022). “Edge Computing for IoT-Enabled Smart Grid: The Future of Energy”Energies15 (17): 6140. doi:10.3390/en15176140ISSN 1996-1073.
  291. ^ It’s Time to Think Beyond Cloud Computing Published by wired.com retrieved April 10, 2019
  292. ^ Taleb, Tarik; Dutta, Sunny; Ksentini, Adlen; Iqbal, Muddesar; Flinck, Hannu (March 2017). “Mobile Edge Computing Potential in Making Cities Smarter”IEEE Communications Magazine55 (3): 38–43. doi:10.1109/MCOM.2017.1600249CMS2CID 11163718. Retrieved 5 July 2019.
  293. ^ Chakraborty, T.; Datta, S. K. (November 2017). “Home automation using edge computing and Internet of Things”. 2017 IEEE International Symposium on Consumer Electronics (ISCE). pp. 47–49. doi:10.1109/ISCE.2017.8355544ISBN 978-1-5386-2189-9S2CID 19156163.
  294. ^ Size of the Prize: How Will Edge Computing in Space Drive Value Creation? Published by Via Satellite retrieved August 18, 2023
  295. ^ “What is edge AI?”www.redhat.com. Retrieved 2023-10-25.
  296. The definition “without being explicitly programmed” is often attributed to Arthur Samuel, who coined the term “machine learning” in 1959, but the phrase is not found verbatim in this publication, and may be a paraphrase that appeared later. Confer “Paraphrasing Arthur Samuel (1959), the question is: How can computers learn to solve problems without being explicitly programmed?” in Koza, John R.; Bennett, Forrest H.; Andre, David; Keane, Martin A. (1996). “Automated Design of Both the Topology and Sizing of Analog Electrical Circuits Using Genetic Programming”. Artificial Intelligence in Design ’96. Artificial Intelligence in Design ’96. Dordrecht, Netherlands: Springer Netherlands. pp. 151–170. doi:10.1007/978-94-009-0279-4_9ISBN 978-94-010-6610-5.
  297. ^ “What is Machine Learning?”IBM. 22 September 2021. Archived from the original on 2023-12-27. Retrieved 2023-06-27.
  298. ^ Hu, Junyan; Niu, Hanlin; Carrasco, Joaquin; Lennox, Barry; Arvin, Farshad (2020). “Voronoi-Based Multi-Robot Autonomous Exploration in Unknown Environments via Deep Reinforcement Learning”IEEE Transactions on Vehicular Technology69 (12): 14413–14423. doi:10.1109/tvt.2020.3034800ISSN 0018-9545S2CID 228989788.
  299. Jump up to:a b Yoosefzadeh-Najafabadi, Mohsen; Hugh, Earl; Tulpan, Dan; Sulik, John; Eskandari, Milad (2021). “Application of Machine Learning Algorithms in Plant Breeding: Predicting Yield From Hyperspectral Reflectance in Soybean?”Front. Plant Sci11: 624273. doi:10.3389/fpls.2020.624273PMC 7835636PMID 33510761.
  300. Jump up to:a b c Bishop, C. M. (2006), Pattern Recognition and Machine Learning, Springer, ISBN 978-0-387-31073-2
  301. ^ Machine learning and pattern recognition “can be viewed as two facets of the same field”.[5]: vii 
  302. Jump up to:a b Friedman, Jerome H. (1998). “Data Mining and Statistics: What’s the connection?”. Computing Science and Statistics29 (1): 3–9.
  303. ^ Samuel, Arthur (1959). “Some Studies in Machine Learning Using the Game of Checkers”. IBM Journal of Research and Development3 (3): 210–229. CiteSeerX 10.1.1.368.2254doi:10.1147/rd.33.0210S2CID 2126705.
  304. Jump up to:a b R. Kohavi and F. Provost, “Glossary of terms”, Machine Learning, vol. 30, no. 2–3, pp. 271–274, 1998.
  305. ^ Gerovitch, Slava (9 April 2015). “How the Computer Got Its Revenge on the Soviet Union”Nautilus. Archived from the original on 22 September 2021. Retrieved 19 September 2021.
  306. ^ Lindsay, Richard P. (1 September 1964). “The Impact of Automation On Public Administration”Western Political Quarterly17 (3): 78–81. doi:10.1177/106591296401700364ISSN 0043-4078S2CID 154021253Archived from the original on 6 October 2021. Retrieved 6 October 2021.
  307. Jump up to:a b c “History and Evolution of Machine Learning: A Timeline”WhatIsArchived from the original on 2023-12-08. Retrieved 2023-12-08.
  308. ^ Milner, Peter M. (1993). “The Mind and Donald O. Hebb”Scientific American268 (1): 124–129. Bibcode:1993SciAm.268a.124Mdoi:10.1038/scientificamerican0193-124ISSN 0036-8733JSTOR 24941344PMID 8418480Archived from the original on 2023-12-20. Retrieved 2023-12-09.
  309. ^ “Science: The Goof Button”, Time (magazine), 18 August 1961.
  310. ^ Nilsson N. Learning Machines, McGraw Hill, 1965.
  311. ^ Duda, R., Hart P. Pattern Recognition and Scene Analysis, Wiley Interscience, 1973
  312. ^ S. Bozinovski “Teaching space: A representation concept for adaptive pattern classification” COINS Technical Report No. 81-28, Computer and Information Science Department, University of Massachusetts at Amherst, MA, 1981. https://web.cs.umass.edu/publication/docs/1981/UM-CS-1981-028.pdf Archived 2021-02-25 at the Wayback Machine
  313. Jump up to:a b Mitchell, T. (1997). Machine Learning. McGraw Hill. p. 2. ISBN 978-0-07-042807-2.
  314. ^ Harnad, Stevan (2008), “The Annotation Game: On Turing (1950) on Computing, Machinery, and Intelligence”, in Epstein, Robert; Peters, Grace (eds.), The Turing Test Sourcebook: Philosophical and Methodological Issues in the Quest for the Thinking Computer, Kluwer, pp. 23–66, ISBN 9781402067082, archived from the original on 2012-03-09, retrieved 2012-12-11
  315. ^ “Introduction to AI Part 1”Edzion. 2020-12-08. Archived from the original on 2021-02-18. Retrieved 2020-12-09.
  316. ^ Sindhu V, Nivedha S, Prakash M (February 2020). “An Empirical Science Research on Bioinformatics in Machine Learning”Journal of Mechanics of Continua and Mathematical Sciences (7). doi:10.26782/jmcms.spl.7/2020.02.00006.
  317. ^ Sarle, Warren S. (1994). “Neural Networks and statistical models”. SUGI 19: proceedings of the Nineteenth Annual SAS Users Group International Conference. SAS Institute. pp. 1538–50. ISBN 9781555446116OCLC 35546178.
  318. Jump up to:a b c d Russell, StuartNorvig, Peter (2003) [1995]. Artificial Intelligence: A Modern Approach (2nd ed.). Prentice Hall. ISBN 978-0137903955.
  319. Jump up to:a b Langley, Pat (2011). “The changing science of machine learning”Machine Learning82 (3): 275–9. doi:10.1007/s10994-011-5242-y.
  320. ^ Mahoney, Matt. “Rationale for a Large Text Compression Benchmark”. Florida Institute of Technology. Retrieved 5 March 2013.
  321. ^ Shmilovici A.; Kahiri Y.; Ben-Gal I.; Hauser S. (2009). “Measuring the Efficiency of the Intraday Forex Market with a Universal Data Compression Algorithm” (PDF)Computational Economics33 (2): 131–154. CiteSeerX 10.1.1.627.3751doi:10.1007/s10614-008-9153-3S2CID 17234503Archived (PDF) from the original on 2009-07-09.
  322. ^ I. Ben-Gal (2008). “On the Use of Data Compression Measures to Analyze Robust Designs” (PDF)IEEE Transactions on Reliability54 (3): 381–388. doi:10.1109/TR.2005.853280S2CID 9376086.
  323. ^ D. Scully; Carla E. Brodley (2006). “Compression and Machine Learning: A New Perspective on Feature Space Vectors”. Data Compression Conference (DCC’06). p. 332. doi:10.1109/DCC.2006.13ISBN 0-7695-2545-8S2CID 12311412.
  324. ^ Gary Adcock (January 5, 2023). “What Is AI Video Compression?”massive.io. Retrieved 6 April 2023.
  325. ^ Mentzer, Fabian; Toderici, George; Tschannen, Michael; Agustsson, Eirikur (2020). “High-Fidelity Generative Image Compression”. arXiv:2006.09965 [eess.IV].
  326. ^ “What is Unsupervised Learning? | IBM”www.ibm.com. 23 September 2021. Retrieved 2024-02-05.
  327. ^ “Differentially private clustering for large-scale datasets”blog.research.google. 2023-05-25. Retrieved 2024-03-16.
  328. ^ Edwards, Benj (2023-09-28). “AI language models can exceed PNG and FLAC in lossless compression, says study”Ars Technica. Retrieved 2024-03-07.
  329. ^ Le Roux, Nicolas; Bengio, Yoshua; Fitzgibbon, Andrew (2012). “Improving First and Second-Order Methods by Modeling Uncertainty”. In Sra, Suvrit; Nowozin, Sebastian; Wright, Stephen J. (eds.). Optimization for Machine Learning. MIT Press. p. 404. ISBN 9780262016469Archived from the original on 2023-01-17. Retrieved 2020-11-12.
  330. ^ Bzdok, Danilo; Altman, Naomi; Krzywinski, Martin (2018). “Statistics versus Machine Learning”Nature Methods15 (4): 233–234. doi:10.1038/nmeth.4642PMC 6082636PMID 30100822.
  331. Jump up to:a b Michael I. Jordan (2014-09-10). “statistics and machine learning”. reddit. Archived from the original on 2017-10-18. Retrieved 2014-10-01.
  332. ^ Hung et al. Algorithms to Measure Surgeon Performance and Anticipate Clinical Outcomes in Robotic Surgery. JAMA Surg. 2018
  333. ^ Cornell University Library (August 2001). “Breiman: Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author)”Statistical Science16 (3). doi:10.1214/ss/1009213726S2CID 62729017Archived from the original on 26 June 2017. Retrieved 8 August 2015.
  334. ^ Gareth James; Daniela Witten; Trevor Hastie; Robert Tibshirani (2013). An Introduction to Statistical Learning. Springer. p. vii. Archived from the original on 2019-06-23. Retrieved 2014-10-25.
  335. ^ Ramezanpour, A.; Beam, A.L.; Chen, J.H.; Mashaghi, A. (17 November 2020). “Statistical Physics for Medical Diagnostics: Learning, Inference, and Optimization Algorithms”Diagnostics10 (11): 972. doi:10.3390/diagnostics10110972PMC 7699346PMID 33228143.
  336. ^ Mashaghi, A.; Ramezanpour, A. (16 March 2018). “Statistical physics of medical diagnostics: Study of a probabilistic model”. Physical Review E97 (3–1): 032118. arXiv:1803.10019Bibcode:2018PhRvE..97c2118Mdoi:10.1103/PhysRevE.97.032118PMID 29776109S2CID 4955393.
  337. ^ Mohri, Mehryar; Rostamizadeh, Afshin; Talwalkar, Ameet (2012). Foundations of Machine Learning. US, Massachusetts: MIT Press. ISBN 9780262018258.
  338. ^ Alpaydin, Ethem (2010). Introduction to Machine Learning. London: The MIT Press. ISBN 978-0-262-01243-0. Retrieved 4 February 2017.
  339. ^ Jordan, M. I.; Mitchell, T. M. (17 July 2015). “Machine learning: Trends, perspectives, and prospects”. Science349 (6245): 255–260. Bibcode:2015Sci…349..255Jdoi:10.1126/science.aaa8415PMID 26185243S2CID 677218.
  340. ^ El Naqa, Issam; Murphy, Martin J. (2015). “What is Machine Learning?”. Machine Learning in Radiation Oncology. pp. 3–11. doi:10.1007/978-3-319-18305-3_1ISBN 978-3-319-18304-6S2CID 178586107.
  341. ^ Okolie, Jude A.; Savage, Shauna; Ogbaga, Chukwuma C.; Gunes, Burcu (June 2022). “Assessing the potential of machine learning methods to study the removal of pharmaceuticals from wastewater using biochar or activated carbon”Total Environment Research Themes1–2: 100001. Bibcode:2022TERT….100001Odoi:10.1016/j.totert.2022.100001S2CID 249022386.
  342. ^ Russell, Stuart J.; Norvig, Peter (2010). Artificial Intelligence: A Modern Approach (Third ed.). Prentice Hall. ISBN 9780136042594.
  343. ^ Mohri, Mehryar; Rostamizadeh, Afshin; Talwalkar, Ameet (2012). Foundations of Machine Learning. The MIT Press. ISBN 9780262018258.
  344. ^ Alpaydin, Ethem (2010). Introduction to Machine Learning. MIT Press. p. 9. ISBN 978-0-262-01243-0Archived from the original on 2023-01-17. Retrieved 2018-11-25.
  345. ^ “Lecture 2 Notes: Supervised Learning”www.cs.cornell.edu. Retrieved 2024-07-01.
  346. ^ Jordan, Michael I.; Bishop, Christopher M. (2004). “Neural Networks”. In Allen B. Tucker (ed.). Computer Science Handbook, Second Edition (Section VII: Intelligent Systems). Boca Raton, Florida: Chapman & Hall/CRC Press LLC. ISBN 978-1-58488-360-9.
  347. ^ Misra, Ishan; Maaten, Laurens van der (2020). Self-Supervised Learning of Pretext-Invariant Representations. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE. pp. 6707–6717. arXiv:1912.01991doi:10.1109/CVPR42600.2020.00674.
  348. ^ Jaiswal, Ashish; Babu, Ashwin Ramesh; Zadeh, Mohammad Zaki; Banerjee, Debapriya; Makedon, Fillia (March 2021). “A Survey on Contrastive Self-Supervised Learning”Technologies9 (1): 2. arXiv:2011.00362doi:10.3390/technologies9010002ISSN 2227-7080.
  349. ^ Alex Ratner; Stephen Bach; Paroma Varma; Chris. “Weak Supervision: The New Programming Paradigm for Machine Learning”hazyresearch.github.io. referencing work by many other members of Hazy Research. Archived from the original on 2019-06-06. Retrieved 2019-06-06.
  350. ^ van Otterlo, M.; Wiering, M. (2012). “Reinforcement Learning and Markov Decision Processes”. Reinforcement Learning. Adaptation, Learning, and Optimization. Vol. 12. pp. 3–42. doi:10.1007/978-3-642-27645-3_1ISBN 978-3-642-27644-6.
  351. ^ Roweis, Sam T.; Saul, Lawrence K. (22 Dec 2000). “Nonlinear Dimensionality Reduction by Locally Linear Embedding”Science290 (5500): 2323–2326. Bibcode:2000Sci…290.2323Rdoi:10.1126/science.290.5500.2323PMID 11125150S2CID 5987139Archived from the original on 15 August 2021. Retrieved 17 July 2023.
  352. ^ Pavel Brazdil; Christophe Giraud Carrier; Carlos Soares; Ricardo Vilalta (2009). Metalearning: Applications to Data Mining (Fourth ed.). Springer Science+Business Media. pp. 10–14, passimISBN 978-3540732624.
  353. ^ Bozinovski, S. (1982). “A self-learning system using secondary reinforcement”. In Trappl, Robert (ed.). Cybernetics and Systems Research: Proceedings of the Sixth European Meeting on Cybernetics and Systems Research. North-Holland. pp. 397–402. ISBN 978-0-444-86488-8.
  354. ^ Bozinovski, Stevo (2014) “Modeling mechanisms of cognition-emotion interaction in artificial neural networks, since 1981.” Procedia Computer Science p. 255-263
  355. ^ Bozinovski, S. (2001) “Self-learning agents: A connectionist theory of emotion based on crossbar value judgment.” Cybernetics and Systems 32(6) 637–667.
  356. ^ Y. Bengio; A. Courville; P. Vincent (2013). “Representation Learning: A Review and New Perspectives”. IEEE Transactions on Pattern Analysis and Machine Intelligence35 (8): 1798–1828. arXiv:1206.5538doi:10.1109/tpami.2013.50PMID 23787338S2CID 393948.
  357. ^ Nathan Srebro; Jason D. M. Rennie; Tommi S. Jaakkola (2004). Maximum-Margin Matrix FactorizationNIPS.
  358. ^ Coates, Adam; Lee, Honglak; Ng, Andrew Y. (2011). An analysis of single-layer networks in unsupervised feature learning (PDF). Int’l Conf. on AI and Statistics (AISTATS). Archived from the original (PDF) on 2017-08-13. Retrieved 2018-11-25.
  359. ^ Csurka, Gabriella; Dance, Christopher C.; Fan, Lixin; Willamowski, Jutta; Bray, Cédric (2004). Visual categorization with bags of keypoints (PDF). ECCV Workshop on Statistical Learning in Computer Vision. Archived (PDF) from the original on 2019-07-13. Retrieved 2019-08-29.
  360. ^ Daniel Jurafsky; James H. Martin (2009). Speech and Language Processing. Pearson Education International. pp. 145–146.
  361. ^ Lu, Haiping; Plataniotis, K.N.; Venetsanopoulos, A.N. (2011). “A Survey of Multilinear Subspace Learning for Tensor Data” (PDF)Pattern Recognition44 (7): 1540–1551. Bibcode:2011PatRe..44.1540Ldoi:10.1016/j.patcog.2011.01.004Archived (PDF) from the original on 2019-07-10. Retrieved 2015-09-04.
  362. ^ Yoshua Bengio (2009). Learning Deep Architectures for AI. Now Publishers Inc. pp. 1–3. ISBN 978-1-60198-294-0Archived from the original on 2023-01-17. Retrieved 2016-02-15.
  363. ^ Tillmann, A. M. (2015). “On the Computational Intractability of Exact and Approximate Dictionary Learning”. IEEE Signal Processing Letters22 (1): 45–49. arXiv:1405.6664Bibcode:2015ISPL…22…45Tdoi:10.1109/LSP.2014.2345761S2CID 13342762.
  364. ^ Aharon, M, M Elad, and A Bruckstein. 2006. “K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation Archived 2018-11-23 at the Wayback Machine.” Signal Processing, IEEE Transactions on 54 (11): 4311–4322
  365. ^ Zimek, Arthur; Schubert, Erich (2017), “Outlier Detection”, Encyclopedia of Database Systems, Springer New York, pp. 1–5, doi:10.1007/978-1-4899-7993-3_80719-1ISBN 9781489979933
  366. ^ Hodge, V. J.; Austin, J. (2004). “A Survey of Outlier Detection Methodologies” (PDF)Artificial Intelligence Review22 (2): 85–126. CiteSeerX 10.1.1.318.4023doi:10.1007/s10462-004-4304-yS2CID 59941878Archived (PDF) from the original on 2015-06-22. Retrieved 2018-11-25.
  367. ^ Dokas, Paul; Ertoz, Levent; Kumar, Vipin; Lazarevic, Aleksandar; Srivastava, Jaideep; Tan, Pang-Ning (2002). “Data mining for network intrusion detection” (PDF)Proceedings NSF Workshop on Next Generation Data MiningArchived (PDF) from the original on 2015-09-23. Retrieved 2023-03-26.
  368. ^ Chandola, V.; Banerjee, A.; Kumar, V. (2009). “Anomaly detection: A survey”. ACM Computing Surveys41 (3): 1–58. doi:10.1145/1541880.1541882S2CID 207172599.
  369. ^ Fleer, S.; Moringen, A.; Klatzky, R. L.; Ritter, H. (2020). “Learning efficient haptic shape exploration with a rigid tactile sensor array, S. Fleer, A. Moringen, R. Klatzky, H. Ritter”PLOS ONE15 (1): e0226880. arXiv:1902.07501doi:10.1371/journal.pone.0226880PMC 6940144PMID 31896135.
  370. ^ Moringen, Alexandra; Fleer, Sascha; Walck, Guillaume; Ritter, Helge (2020), Nisky, Ilana; Hartcher-O’Brien, Jess; Wiertlewski, Michaël; Smeets, Jeroen (eds.), “Attention-Based Robot Learning of Haptic Interaction”, Haptics: Science, Technology, Applications, Lecture Notes in Computer Science, vol. 12272, Cham: Springer International Publishing, pp. 462–470, doi:10.1007/978-3-030-58147-3_51ISBN 978-3-030-58146-6S2CID 220069113
  371. ^ Piatetsky-Shapiro, Gregory (1991), Discovery, analysis, and presentation of strong rules, in Piatetsky-Shapiro, Gregory; and Frawley, William J.; eds., Knowledge Discovery in Databases, AAAI/MIT Press, Cambridge, MA.
  372. ^ Bassel, George W.; Glaab, Enrico; Marquez, Julietta; Holdsworth, Michael J.; Bacardit, Jaume (2011-09-01). “Functional Network Construction in Arabidopsis Using Rule-Based Machine Learning on Large-Scale Data Sets”The Plant Cell23 (9): 3101–3116. Bibcode:2011PlanC..23.3101Bdoi:10.1105/tpc.111.088153ISSN 1532-298XPMC 3203449PMID 21896882.
  373. ^ Agrawal, R.; Imieliński, T.; Swami, A. (1993). “Mining association rules between sets of items in large databases”. Proceedings of the 1993 ACM SIGMOD international conference on Management of data – SIGMOD ’93. p. 207. CiteSeerX 10.1.1.40.6984doi:10.1145/170035.170072ISBN 978-0897915922S2CID 490415.
  374. ^ Urbanowicz, Ryan J.; Moore, Jason H. (2009-09-22). “Learning Classifier Systems: A Complete Introduction, Review, and Roadmap”Journal of Artificial Evolution and Applications2009: 1–25. doi:10.1155/2009/736398ISSN 1687-6229.
  375. ^ Plotkin G.D. Automatic Methods of Inductive Inference Archived 2017-12-22 at the Wayback Machine, PhD thesis, University of Edinburgh, 1970.
  376. ^ Shapiro, Ehud Y. Inductive inference of theories from facts Archived 2021-08-21 at the Wayback Machine, Research Report 192, Yale University, Department of Computer Science, 1981. Reprinted in J.-L. Lassez, G. Plotkin (Eds.), Computational Logic, The MIT Press, Cambridge, MA, 1991, pp. 199–254.
  377. ^ Shapiro, Ehud Y. (1983). Algorithmic program debugging. Cambridge, Mass: MIT Press. ISBN 0-262-19218-7
  378. ^ Shapiro, Ehud Y. “The model inference system Archived 2023-04-06 at the Wayback Machine.” Proceedings of the 7th international joint conference on Artificial intelligence-Volume 2. Morgan Kaufmann Publishers Inc., 1981.
  379. ^ Burkov, Andriy (2019). The hundred-page machine learning book. Polen: Andriy Burkov. ISBN 978-1-9995795-0-0.
  380. ^ Russell, Stuart J.; Norvig, Peter (2021). Artificial intelligence: a modern approach. Pearson series in artificial intelligence (Fourth ed.). Hoboken: Pearson. ISBN 978-0-13-461099-3.
  381. ^ Honglak Lee, Roger Grosse, Rajesh Ranganath, Andrew Y. Ng. “Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations Archived 2017-10-18 at the Wayback Machine” Proceedings of the 26th Annual International Conference on Machine Learning, 2009.
  382. ^ Cortes, Corinna; Vapnik, Vladimir N. (1995). “Support-vector networks”Machine Learning20 (3): 273–297. doi:10.1007/BF00994018.
  383. ^ Stevenson, Christopher. “Tutorial: Polynomial Regression in Excel”facultystaff.richmond.eduArchived from the original on 2 June 2013. Retrieved 22 January 2017.
  384. ^ The documentation for scikit-learn also has similar examples Archived 2022-11-02 at the Wayback Machine.
  385. ^ Goldberg, David E.; Holland, John H. (1988). “Genetic algorithms and machine learning” (PDF)Machine Learning3 (2): 95–99. doi:10.1007/bf00113892S2CID 35506513Archived (PDF) from the original on 2011-05-16. Retrieved 2019-09-03.
  386. ^ Michie, D.; Spiegelhalter, D. J.; Taylor, C. C. (1994). “Machine Learning, Neural and Statistical Classification”. Ellis Horwood Series in Artificial IntelligenceBibcode:1994mlns.book…..M.
  387. ^ Zhang, Jun; Zhan, Zhi-hui; Lin, Ying; Chen, Ni; Gong, Yue-jiao; Zhong, Jing-hui; Chung, Henry S.H.; Li, Yun; Shi, Yu-hui (2011). “Evolutionary Computation Meets Machine Learning: A Survey”. Computational Intelligence Magazine6 (4): 68–75. doi:10.1109/mci.2011.942584S2CID 6760276.
  388. ^ “Federated Learning: Collaborative Machine Learning without Centralized Training Data”Google AI Blog. 6 April 2017. Archived from the original on 2019-06-07. Retrieved 2019-06-08.
  389. ^ Machine learning is included in the CFA Curriculum (discussion is top-down); see: Kathleen DeRose and Christophe Le Lanno (2020). “Machine Learning” Archived 2020-01-13 at the Wayback Machine.
  390. ^ Ivanenko, Mikhail; Smolik, Waldemar T.; Wanta, Damian; Midura, Mateusz; Wróblewski, Przemysław; Hou, Xiaohan; Yan, Xiaoheng (2023). “Image Reconstruction Using Supervised Learning in Wearable Electrical Impedance Tomography of the Thorax”Sensors23 (18): 7774. Bibcode:2023Senso..23.7774Idoi:10.3390/s23187774PMC 10538128PMID 37765831.
  391. ^ “BelKor Home Page” research.att.com
  392. ^ “The Netflix Tech Blog: Netflix Recommendations: Beyond the 5 stars (Part 1)”. 2012-04-06. Archived from the original on 31 May 2016. Retrieved 8 August 2015.
  393. ^ Scott Patterson (13 July 2010). “Letting the Machines Decide”The Wall Street JournalArchived from the original on 24 June 2018. Retrieved 24 June 2018.
  394. ^ Vinod Khosla (January 10, 2012). “Do We Need Doctors or Algorithms?”. Tech Crunch. Archived from the original on June 18, 2018. Retrieved October 20, 2016.
  395. ^ When A Machine Learning Algorithm Studied Fine Art Paintings, It Saw Things Art Historians Had Never Noticed Archived 2016-06-04 at the Wayback MachineThe Physics at ArXiv blog
  396. ^ Vincent, James (2019-04-10). “The first AI-generated textbook shows what robot writers are actually good at”The VergeArchived from the original on 2019-05-05. Retrieved 2019-05-05.
  397. ^ Vaishya, Raju; Javaid, Mohd; Khan, Ibrahim Haleem; Haleem, Abid (July 1, 2020). “Artificial Intelligence (AI) applications for COVID-19 pandemic”Diabetes & Metabolic Syndrome: Clinical Research & Reviews14 (4): 337–339. doi:10.1016/j.dsx.2020.04.012PMC 7195043PMID 32305024.
  398. ^ Rezapouraghdam, Hamed; Akhshik, Arash; Ramkissoon, Haywantee (March 10, 2021). “Application of machine learning to predict visitors’ green behavior in marine protected areas: evidence from Cyprus”Journal of Sustainable Tourism31 (11): 2479–2505. doi:10.1080/09669582.2021.1887878hdl:10037/24073.
  399. ^ Dey, Somdip; Singh, Amit Kumar; Wang, Xiaohang; McDonald-Maier, Klaus (2020-06-15). “User Interaction Aware Reinforcement Learning for Power and Thermal Efficiency of CPU-GPU Mobile MPSoCs”2020 Design, Automation & Test in Europe Conference & Exhibition (DATE) (PDF). pp. 1728–1733. doi:10.23919/DATE48585.2020.9116294ISBN 978-3-9819263-4-7S2CID 219858480Archived from the original on 2021-12-13. Retrieved 2022-01-20.
  400. ^ Quested, Tony. “Smartphones get smarter with Essex innovation”Business WeeklyArchived from the original on 2021-06-24. Retrieved 2021-06-17.
  401. ^ Williams, Rhiannon (2020-07-21). “Future smartphones ‘will prolong their own battery life by monitoring owners’ behaviour'”iArchived from the original on 2021-06-24. Retrieved 2021-06-17.
  402. ^ Rasekhschaffe, Keywan Christian; Jones, Robert C. (2019-07-01). “Machine Learning for Stock Selection”Financial Analysts Journal75 (3): 70–88. doi:10.1080/0015198X.2019.1596678ISSN 0015-198XS2CID 108312507Archived from the original on 2023-11-26. Retrieved 2023-11-26.
  403. ^ Chung, Yunsie; Green, William H. (2024). “Machine learning from quantum chemistry to predict experimental solvent effects on reaction rates”Chemical Science15 (7): 2410–2424. doi:10.1039/D3SC05353AISSN 2041-6520PMC 10866337PMID 38362410Archived from the original on 2024-05-19. Retrieved 2024-04-21.
  404. ^ Sun, Yuran; Huang, Shih-Kai; Zhao, Xilei (2024-02-01). “Predicting Hurricane Evacuation Decisions with Interpretable Machine Learning Methods”International Journal of Disaster Risk Science15 (1): 134–148. arXiv:2303.06557Bibcode:2024IJDRS..15..134Sdoi:10.1007/s13753-024-00541-1ISSN 2192-6395.
  405. ^ Sun, Yuran; Zhao, Xilei; Lovreglio, Ruggiero; Kuligowski, Erica (2024-01-01), Naser, M. Z. (ed.), “8 – AI for large-scale evacuation modeling: promises and challenges”Interpretable Machine Learning for the Analysis, Design, Assessment, and Informed Decision Making for Civil Infrastructure, Woodhead Publishing Series in Civil and Structural Engineering, Woodhead Publishing, pp. 185–204, ISBN 978-0-12-824073-1archived from the original on 2024-05-19, retrieved 2024-05-19
  406. ^ Xu, Ningzhe; Lovreglio, Ruggiero; Kuligowski, Erica D.; Cova, Thomas J.; Nilsson, Daniel; Zhao, Xilei (2023-03-01). “Predicting and Assessing Wildfire Evacuation Decision-Making Using Machine Learning: Findings from the 2019 Kincade Fire”Fire Technology59 (2): 793–825. doi:10.1007/s10694-023-01363-1ISSN 1572-8099Archived from the original on 2024-05-19. Retrieved 2024-05-19.
  407. ^ Wang, Ke; Shi, Xiupeng; Goh, Algena Pei Xuan; Qian, Shunzhi (2019-06-01). “A machine learning based study on pedestrian movement dynamics under emergency evacuation”Fire Safety Journal106: 163–176. Bibcode:2019FirSJ.106..163Wdoi:10.1016/j.firesaf.2019.04.008hdl:10356/143390ISSN 0379-7112Archived from the original on 2024-05-19. Retrieved 2024-05-19.
  408. ^ Zhao, Xilei; Lovreglio, Ruggiero; Nilsson, Daniel (2020-05-01). “Modelling and interpreting pre-evacuation decision-making using machine learning”Automation in Construction113: 103140. doi:10.1016/j.autcon.2020.103140hdl:10179/17315ISSN 0926-5805Archived from the original on 2024-05-19. Retrieved 2024-05-19.
  409. ^ “Why Machine Learning Models Often Fail to Learn: QuickTake Q&A”Bloomberg.com. 2016-11-10. Archived from the original on 2017-03-20. Retrieved 2017-04-10.
  410. ^ “The First Wave of Corporate AI Is Doomed to Fail”Harvard Business Review. 2017-04-18. Archived from the original on 2018-08-21. Retrieved 2018-08-20.
  411. ^ “Why the A.I. euphoria is doomed to fail”VentureBeat. 2016-09-18. Archived from the original on 2018-08-19. Retrieved 2018-08-20.
  412. ^ “9 Reasons why your machine learning project will fail”www.kdnuggets.comArchived from the original on 2018-08-21. Retrieved 2018-08-20.
  413. Jump up to:a b Babuta, Alexander; Oswald, Marion; Rinik, Christine (2018). Transparency and Intelligibility (Report). Royal United Services Institute (RUSI). pp. 17–22. Archived from the original on 2023-12-09. Retrieved 2023-12-09.
  414. ^ “Why Uber’s self-driving car killed a pedestrian”The EconomistArchived from the original on 2018-08-21. Retrieved 2018-08-20.
  415. ^ “IBM’s Watson recommended ‘unsafe and incorrect’ cancer treatments – STAT”STAT. 2018-07-25. Archived from the original on 2018-08-21. Retrieved 2018-08-21.
  416. ^ Hernandez, Daniela; Greenwald, Ted (2018-08-11). “IBM Has a Watson Dilemma”The Wall Street JournalISSN 0099-9660Archived from the original on 2018-08-21. Retrieved 2018-08-21.
  417. ^ Allyn, Bobby (Feb 27, 2023). “How Microsoft’s experiment in artificial intelligence tech backfired”National Public RadioArchived from the original on December 8, 2023. Retrieved Dec 8, 2023.
  418. ^ Reddy, Shivani M.; Patel, Sheila; Weyrich, Meghan; Fenton, Joshua; Viswanathan, Meera (2020). “Comparison of a traditional systematic review approach with review-of-reviews and semi-automation as strategies to update the evidence”Systematic Reviews9 (1): 243. doi:10.1186/s13643-020-01450-2ISSN 2046-4053PMC 7574591PMID 33076975.
  419. ^ Rudin, Cynthia (2019). “Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead”Nature Machine Intelligence1 (5): 206–215. doi:10.1038/s42256-019-0048-xPMC 9122117PMID 35603010.
  420. ^ Hu, Tongxi; Zhang, Xuesong; Bohrer, Gil; Liu, Yanlan; Zhou, Yuyu; Martin, Jay; LI, Yang; Zhao, Kaiguang (2023). “Crop yield prediction via explainable AI and interpretable machine learning: Dangers of black box models for evaluating climate change impacts on crop yield”Agricultural and Forest Meteorology336: 109458. doi:10.1016/j.agrformet.2023.109458S2CID 258552400.
  421. ^ Domingos 2015, Chapter 6, Chapter 7.
  422. ^ Domingos 2015, p. 286.
  423. ^ “Single pixel change fools AI programs”BBC News. 3 November 2017. Archived from the original on 22 March 2018. Retrieved 12 March 2018.
  424. ^ “AI Has a Hallucination Problem That’s Proving Tough to Fix”WIRED. 2018. Archived from the original on 12 March 2018. Retrieved 12 March 2018.
  425. ^ Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. (4 September 2019). “Towards deep learning models resistant to adversarial attacks”. arXiv:1706.06083 [stat.ML].
  426. ^ “Adversarial Machine Learning – CLTC UC Berkeley Center for Long-Term Cybersecurity”CLTCArchived from the original on 2022-05-17. Retrieved 2022-05-25.
  427. ^ “Machine-learning models vulnerable to undetectable backdoors”The RegisterArchived from the original on 13 May 2022. Retrieved 13 May 2022.
  428. ^ “Undetectable Backdoors Plantable In Any Machine-Learning Algorithm”IEEE Spectrum. 10 May 2022. Archived from the original on 11 May 2022. Retrieved 13 May 2022.
  429. ^ Goldwasser, Shafi; Kim, Michael P.; Vaikuntanathan, Vinod; Zamir, Or (14 April 2022). “Planting Undetectable Backdoors in Machine Learning Models”. arXiv:2204.06974 [cs.LG].
  430. ^ Kohavi, Ron (1995). “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection” (PDF)International Joint Conference on Artificial IntelligenceArchived (PDF) from the original on 2018-07-12. Retrieved 2023-03-26.
  431. ^ Catal, Cagatay (2012). “Performance Evaluation Metrics for Software Fault Prediction Studies” (PDF)Acta Polytechnica Hungarica9 (4). Retrieved 2 October 2016.
  432. Jump up to:a b Cite error: The named reference Ethics of artificial intelligence Müller-2020 was invoked but never defined (see the help page).
  433. Jump up to:a b Garcia, Megan (2016). “Racist in the Machine”. World Policy Journal33 (4): 111–117. doi:10.1215/07402775-3813015ISSN 0740-2775S2CID 151595343.
  434. ^ Bostrom, Nick (2011). “The Ethics of Artificial Intelligence” (PDF). Archived from the original (PDF) on 4 March 2016. Retrieved 11 April 2016.
  435. ^ Edionwe, Tolulope. “The fight against racist algorithms”The OutlineArchived from the original on 17 November 2017. Retrieved 17 November 2017.
  436. ^ Jeffries, Adrianne. “Machine learning is racist because the internet is racist”The OutlineArchived from the original on 17 November 2017. Retrieved 17 November 2017.
  437. Jump up to:a b Silva, Selena; Kenney, Martin (2018). “Algorithms, Platforms, and Ethnic Bias: An Integrative Essay” (PDF)Phylon55 (1 & 2): 9–37. ISSN 0031-8906JSTOR 26545017Archived (PDF) from the original on Jan 27, 2024.
  438. ^ Wong, Carissa (2023-03-30). “AI ‘fairness’ research held back by lack of diversity”Naturedoi:10.1038/d41586-023-00935-zPMID 36997714S2CID 257857012Archived from the original on 2023-04-12. Retrieved 2023-12-09.
  439. Jump up to:a b Zhang, Jack Clark. “Artificial Intelligence Index Report 2021” (PDF)Stanford Institute for Human-Centered Artificial IntelligenceArchived (PDF) from the original on 2024-05-19. Retrieved 2023-12-09.
  440. ^ Caliskan, Aylin; Bryson, Joanna J.; Narayanan, Arvind (2017-04-14). “Semantics derived automatically from language corpora contain human-like biases”. Science356 (6334): 183–186. arXiv:1608.07187Bibcode:2017Sci…356..183Cdoi:10.1126/science.aal4230ISSN 0036-8075PMID 28408601S2CID 23163324.
  441. ^ Wang, Xinan; Dasgupta, Sanjoy (2016), Lee, D. D.; Sugiyama, M.; Luxburg, U. V.; Guyon, I. (eds.), “An algorithm for L1 nearest neighbor search via monotonic embedding” (PDF)Advances in Neural Information Processing Systems 29, Curran Associates, Inc., pp. 983–991, archived (PDF) from the original on 2017-04-07, retrieved 2018-08-20
  442. ^ M.O.R. Prates; P.H.C. Avelar; L.C. Lamb (11 Mar 2019). “Assessing Gender Bias in Machine Translation – A Case Study with Google Translate”. arXiv:1809.02208 [cs.CY].
  443. ^ Narayanan, Arvind (August 24, 2016). “Language necessarily contains human biases, and so will machines trained on language corpora”Freedom to TinkerArchived from the original on June 25, 2018. Retrieved November 19, 2016.
  444. ^ Metz, Rachel (March 24, 2016). “Why Microsoft Accidentally Unleashed a Neo-Nazi Sexbot”MIT Technology ReviewArchived from the original on 2018-11-09. Retrieved 2018-08-20.
  445. ^ Vincent, James (Jan 12, 2018). “Google ‘fixed’ its racist algorithm by removing gorillas from its image-labeling tech”The VergeArchived from the original on 2018-08-21. Retrieved 2018-08-20.
  446. ^ Crawford, Kate (25 June 2016). “Opinion | Artificial Intelligence’s White Guy Problem”New York TimesArchived from the original on 2021-01-14. Retrieved 2018-08-20.
  447. ^ Simonite, Tom (March 30, 2017). “Microsoft: AI Isn’t Yet Adaptable Enough to Help Businesses”MIT Technology ReviewArchived from the original on 2018-11-09. Retrieved 2018-08-20.
  448. ^ Hempel, Jessi (2018-11-13). “Fei-Fei Li’s Quest to Make Machines Better for Humanity”WiredISSN 1059-1028Archived from the original on 2020-12-14. Retrieved 2019-02-17.
  449. ^ Char, D. S.; Shah, N. H.; Magnus, D. (2018). “Implementing Machine Learning in Health Care—Addressing Ethical Challenges”New England Journal of Medicine378 (11): 981–983. doi:10.1056/nejmp1714229PMC 5962261PMID 29539284.
  450. ^ Research, AI (23 October 2015). “Deep Neural Networks for Acoustic Modeling in Speech Recognition”airesearch.comArchived from the original on 1 February 2016. Retrieved 23 October 2015.
  451. ^ “GPUs Continue to Dominate the AI Accelerator Market for Now”InformationWeek. December 2019. Archived from the original on 10 June 2020. Retrieved 11 June 2020.
  452. ^ Ray, Tiernan (2019). “AI is changing the entire nature of compute”ZDNetArchived from the original on 25 May 2020. Retrieved 11 June 2020.
  453. ^ “AI and Compute”OpenAI. 16 May 2018. Archived from the original on 17 June 2020. Retrieved 11 June 2020.
  454. ^ “What is neuromorphic computing? Everything you need to know about how it is changing the future of computing”ZDNET. 8 December 2020. Retrieved 2024-11-21.
  455. ^ “Cornell & NTT’s Physical Neural Networks: A “Radical Alternative for Implementing Deep Neural Networks” That Enables Arbitrary Physical Systems Training”Synced. 27 May 2021. Archived from the original on 27 October 2021. Retrieved 12 October 2021.
  456. ^ “Nano-spaghetti to solve neural network power consumption”The Register. 5 October 2021. Archived from the original on 2021-10-06. Retrieved 2021-10-12.
  457. ^ Fafoutis, Xenofon; Marchegiani, Letizia; Elsts, Atis; Pope, James; Piechocki, Robert; Craddock, Ian (2018-05-07). “Extending the battery lifetime of wearable sensors with embedded machine learning”2018 IEEE 4th World Forum on Internet of Things (WF-IoT). pp. 269–274. doi:10.1109/WF-IoT.2018.8355116hdl:1983/b8fdb58b-7114-45c6-82e4-4ab239c1327fISBN 978-1-4673-9944-9S2CID 19192912Archived from the original on 2022-01-18. Retrieved 2022-01-17.
  458. ^ “A Beginner’s Guide To Machine learning For Embedded Systems”Analytics India Magazine. 2021-06-02. Archived from the original on 2022-01-18. Retrieved 2022-01-17.
  459. ^ Synced (2022-01-12). “Google, Purdue & Harvard U’s Open-Source Framework for TinyML Achieves up to 75x Speedups on FPGAs | Synced”syncedreview.comArchived from the original on 2022-01-18. Retrieved 2022-01-17.
  460. ^ Giri, Davide; Chiu, Kuan-Lin; Di Guglielmo, Giuseppe; Mantovani, Paolo; Carloni, Luca P. (2020-06-15). “ESP4ML: Platform-Based Design of Systems-on-Chip for Embedded Machine Learning”2020 Design, Automation & Test in Europe Conference & Exhibition (DATE). pp. 1049–1054. arXiv:2004.03640doi:10.23919/DATE48585.2020.9116317ISBN 978-3-9819263-4-7S2CID 210928161Archived from the original on 2022-01-18. Retrieved 2022-01-17.
  461. ^ Louis, Marcia Sahaya; Azad, Zahra; Delshadtehrani, Leila; Gupta, Suyog; Warden, Pete; Reddi, Vijay Janapa; Joshi, Ajay (2019). “Towards Deep Learning using TensorFlow Lite on RISC-V”Harvard UniversityArchived from the original on 2022-01-17. Retrieved 2022-01-17.
  462. ^ Ibrahim, Ali; Osta, Mario; Alameh, Mohamad; Saleh, Moustafa; Chible, Hussein; Valle, Maurizio (2019-01-21). “Approximate Computing Methods for Embedded Machine Learning”2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS). pp. 845–848. doi:10.1109/ICECS.2018.8617877ISBN 978-1-5386-9562-3S2CID 58670712Archived from the original on 2022-01-17. Retrieved 2022-01-17.
  463. ^ “dblp: TensorFlow Eager: A Multi-Stage, Python-Embedded DSL for Machine Learning”dblp.orgArchived from the original on 2022-01-18. Retrieved 2022-01-17.
  464. ^ Branco, Sérgio; Ferreira, André G.; Cabral, Jorge (2019-11-05). “Machine Learning in Resource-Scarce Embedded Systems, FPGAs, and End-Devices: A Survey”Electronics8 (11): 1289. doi:10.3390/electronics8111289hdl:1822/62521ISSN 2079-9292.
  465. Morris, David Z. (15 May 2016). “Leaderless, Blockchain-Based Venture Capital Fund Raises $100 Million, And Counting”FortuneArchived from the original on 21 May 2016. Retrieved 23 May 2016.
  466. Jump up to:a b Popper, Nathan (21 May 2016). “A Venture Fund With Plenty of Virtual Capital, but No Capitalist”The New York TimesArchived from the original on 22 May 2016. Retrieved 23 May 2016.
  467. Jump up to:a b c d e f g h i “Blockchains: The great chain of being sure about things”The Economist. 31 October 2015. Archived from the original on 3 July 2016. Retrieved 18 June 2016The technology behind bitcoin lets people who do not know or trust each other build a dependable ledger. This has implications far beyond the crypto currency.
  468. Jump up to:a b c d e Narayanan, Arvind; Bonneau, Joseph; Felten, Edward; Miller, Andrew; Goldfeder, Steven (2016). Bitcoin and cryptocurrency technologies: a comprehensive introduction. Princeton, New Jersey: Princeton University PressISBN 978-0-691-17169-2.
  469. ^ Iansiti, Marco; Lakhani, Karim R. (January 2017). “The Truth About Blockchain”Harvard Business Review. Cambridge, Massachusetts: Harvard UniversityArchived from the original on 18 January 2017. Retrieved 17 January 2017The technology at the heart of bitcoin and other virtual currencies, blockchain is an open, distributed ledger that can record transactions between two parties efficiently and in a verifiable and permanent way.
  470. ^ Oberhaus, Daniel (27 August 2018). “The World’s Oldest Blockchain Has Been Hiding in the New York Times Since 1995”Vice. Retrieved 9 October 2021.
  471. ^ Lunn, Bernard (10 February 2018). “Blockchain may finally disrupt payments from Micropayments to credit cards to SWIFT”dailyfintech.comArchived from the original on 27 September 2018. Retrieved 18 November 2018.
  472. Jump up to:a b c d e Hampton, Nikolai (5 September 2016). “Understanding the blockchain hype: Why much of it is nothing more than snake oil and spin”ComputerworldArchived from the original on 6 September 2016. Retrieved 5 September 2016.
  473. Jump up to:a b Bakos, Yannis; Halaburda, Hanna; Mueller-Bloch, Christoph (February 2021). “When Permissioned Blockchains Deliver More Decentralization Than Permissionless”. Communications of the ACM64 (2): 20–22. doi:10.1145/3442371S2CID 231704491.
  474. ^ Sherman, Alan T.; Javani, Farid; Zhang, Haibin; Golaszewski, Enis (January 2019). “On the Origins and Variations of Blockchain Technologies”. IEEE Security Privacy17 (1): 72–77. arXiv:1810.06130doi:10.1109/MSEC.2019.2893730ISSN 1558-4046S2CID 53114747.
  475. ^ Haber, Stuart; Stornetta, W. Scott (January 1991). “How to time-stamp a digital document”. Journal of Cryptology3 (2): 99–111. CiteSeerX 10.1.1.46.8740doi:10.1007/bf00196791S2CID 14363020.
  476. ^ Bayer, Dave; Haber, Stuart; Stornetta, W. Scott (March 1992). “Improving the Efficiency and Reliability of Digital Time-Stamping”. Sequences. Vol. 2. pp. 329–334. CiteSeerX 10.1.1.71.4891doi:10.1007/978-1-4613-9323-8_24ISBN 978-1-4613-9325-2.
  477. ^ Oberhaus, Daniel (27 August 2018). “The World’s Oldest Blockchain Has Been Hiding in the New York Times Since 1995”www.vice.com. Retrieved 9 October 2021.
  478. ^ Nian, Lam Pak; Chuen, David LEE Kuo (2015). “A Light Touch of Regulation for Virtual Currencies”. In Chuen, David LEE Kuo (ed.). Handbook of Digital Currency: Bitcoin, Innovation, Financial Instruments, and Big Data. Academic Press. p. 319. ISBN 978-0-12-802351-8.
  479. ^ “Blockchain Size”Archived from the original on 19 May 2020. Retrieved 25 February 2020.
  480. ^ Johnsen, Maria (12 May 2020). Blockchain in Digital Marketing: A New Paradigm of Trust. Maria Johnsen. p. 6. ISBN 979-8-6448-7308-1.
  481. ^ “The future of blockchain in 8 charts”Raconteur. 27 June 2016. Archived from the original on 2 December 2016. Retrieved 3 December 2016.
  482. ^ “Hype Killer – Only 1% of Companies Are Using Blockchain, Gartner Reports | Artificial Lawyer”Artificial Lawyer. 4 May 2018. Archived from the original on 22 May 2018. Retrieved 22 May 2018.
  483. ^ Kasey Panetta. (31 October 2018). “Digital Business: CIO Agenda 2019: Exploit Transformational Technologies.” Gartner website Archived 20 April 2021 at the Wayback Machine Retrieved 27 March 2021.
  484. ^ Armstrong, Stephen (7 November 2016). “Move over Bitcoin, the blockchain is only just getting started”WiredArchived from the original on 8 November 2016. Retrieved 9 November 2016.
  485. ^ Catalini, Christian; Gans, Joshua S. (23 November 2016). “Some Simple Economics of the Blockchain” (PDF)SSRNdoi:10.2139/ssrn.2874598hdl:1721.1/130500S2CID 46904163SSRN 2874598Archived (PDF) from the original on 6 March 2020. Retrieved 16 September 2019.
  486. ^ Tapscott, DonTapscott, Alex (8 May 2016). “Here’s Why Blockchains Will Change the World”FortuneArchived from the original on 13 November 2016. Retrieved 16 November 2016.
  487. ^ Bheemaiah, Kariappa (January 2015). “Block Chain 2.0: The Renaissance of Money”WiredArchived from the original on 14 November 2016. Retrieved 13 November 2016.
  488. ^ Chen, Huashan; Pendleton, Marcus; Njilla, Laurent; Xu, Shouhuai (12 June 2020). “A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses”. ACM Computing Surveys53 (3): 3–4. arXiv:1908.04507doi:10.1145/3391195ISSN 0360-0300S2CID 199551841.
  489. ^ Shishir, Bhatia (2 February 2006). Structured Information Flow (SIF) Framework for Automating End-to-End Information Flow for Large Organizations (Thesis). Virginia Tech. Archived from the original on 4 April 2022. Retrieved 28 March 2022.
  490. ^ “Genesis Block Definition”InvestopediaArchived from the original on 6 August 2022. Retrieved 10 August 2022.
  491. Jump up to:a b c d Bhaskar, Nirupama Devi; Chuen, David LEE Kuo (2015). “Bitcoin Mining Technology”. Handbook of Digital Currency. pp. 45–65. doi:10.1016/B978-0-12-802117-0.00003-5ISBN 978-0-12-802117-0.
  492. ^ Knirsch, Unterweger & Engel 2019, p. 2.
  493. Jump up to:a b c Antonopoulos, Andreas (20 February 2014). “Bitcoin security model: trust by computation”Radar. O’Reilly. Archived from the original on 31 October 2016. Retrieved 19 November 2016.
  494. Jump up to:a b Antonopoulos, Andreas M. (2014). Mastering Bitcoin. Unlocking Digital Cryptocurrencies. Sebastopol, CA: O’Reilly Media. ISBN 978-1449374037. Archived from the original on 1 December 2016. Retrieved 3 November 2015.
  495. ^ Nakamoto, Satoshi (October 2008). “Bitcoin: A Peer-to-Peer Electronic Cash System” (PDF). bitcoin.org. Archived (PDF) from the original on 20 March 2014. Retrieved 28 April 2014.
  496. ^ “Permissioned Blockchains”Explainer. Monax. Archived from the original on 20 November 2016. Retrieved 20 November 2016.
  497. ^ Kumar, Randhir; Tripathi, Rakesh (November 2019). “Implementation of Distributed File Storage and Access Framework using IPFS and Blockchain”. 2019 Fifth International Conference on Image Information Processing (ICIIP). IEEE. pp. 246–251. doi:10.1109/iciip47207.2019.8985677ISBN 978-1-7281-0899-5S2CID 211119043.
  498. ^ Lee, Timothy (12 March 2013). “Major glitch in Bitcoin network sparks sell-off; price temporarily falls 23%”. Arstechnica. Archived from the original on 20 April 2013. Retrieved 25 February 2018.
  499. ^ Smith, Oli (21 January 2018). “Bitcoin price RIVAL: Cryptocurrency ‘faster than bitcoin’ will CHALLENGE market leaders”ExpressArchived from the original on 28 March 2019. Retrieved 6 April 2021.
  500. ^ “Bitcoin split in two, here’s what that means”CNN. 1 August 2017. Archived from the original on 27 February 2018. Retrieved 7 April 2021.

This white paper serves as a foundational document to guide organizations in understanding and implementing innovations in computer networks, ensuring they remain competitive and capable of meeting future demands.